
Binary search trees

Lecturer: Dr Anwarul Patwary

1 / 26

Outline

We discuss:

I What is a binary search tree?
I How are they used?
I How fast are they to use?

2 / 26

Binary search trees

I A binary search tree is a
special type of binary tree,
with its nodes in a particular
order, which allows us to look
up values quickly.

I Notice that for a tree, every
node below the root of a tree
is the root of another tree,
called a subtree.

3 / 26

Binary search trees

In this tree:
I the root of the tree is 6

I its left child, 2, is the root
of a subtree containing 1,4
and 3.

I its right child, 8, is the root
of a subtree containing 8, 7
and 10.

4 / 26

Binary search tree requirements

I To be a binary search tree, a
binary tree must satisfy the
following property:
for all nodes, the values in the
node’s right subtree are
greater than the node’s value.

I For example:
I 2,1,4 are all less than 6.
I 8,2,10 are all greater than 6.

I At the next level, 1 is less than 2 and 4 and 3 are greater than
2.

I In the right subtree 7 is less than 8 and 10 is greater than 8.

5 / 26

Duplicate values

I If we need to handle duplicate
values, we can allow identical
values to fall either on the left
or right, but we should be
consistent about it
throughout.

6 / 26

Using a binary search tree

I The primary use of a binary
search tree is to search for
values and see if they are in
the tree.

I As an example: How do we
check to see if 7 is in the tree?

I Start at the root.
I 7 is greater than 6, so if it’s in the tree, it must be to the right.
I Then, 7 is less than 8, so it must be left.
I And we then find 7 in the tree.

7 / 26

Using a binary search tree

Now, let’s search for 5.

I Start at the root.
I Five is less than 6, so it must

be to the left.
I Five is greater than 2, so it

must be right.

I Five is also greater than 4, so it must be right again.
I However, there is no child here. The pointer is null. This

means that 5 is not in our tree

8 / 26

Binary search tree algorithm

We can search the binary tree with the following algorithm:

I At every node, check to see if we have found the value we are
looking for.

I If we do not find it, determine if it should be on the left or
right and check that subtree.

I Cntinue down the tree until there is no child node on either the
left or right.

9 / 26

Binary search tree algorithm

In pseudocode:

method binarySearch(aNode, key):
if aNode == null:

return false
if aNode.value == key:

return true
if key > aNode.value:

binarySearch(aNode.right)
else:

binarySearch(aNode.left)

10 / 26

Binary search tree Java code
Here is a simplified version of the find method from
BinarySearchTree.java implementing this algorithm. We
assume that our tree only stores ints.

boolean find(int key, BinaryTreeNode n) {
if (n == null) { return false; }
if (n.value == key) {

return true;
} else if (key < n.value) {

return (find(key, n.left));
} else {

return (find(key, n.right));
}

}

The complete method in BinarySearchTree.java uses Java
generics, so it can store any type of data.

11 / 26

Inserting new values

I We can insert new values into
the tree, but they must go
into the correct place so that
the tree still obeys the rules
for being a binary search tree.

I Recall that 5 was not in the
tree. How do we insert it?

I The process looks similar to
search.

12 / 26

Inserting new values

I We start at the root
I We compare the value to be

inserted with the value at this
node –
five is less than six, so we go
left to 2

I Then we go right to 4

I and right again
I but 4 has no child on this side.
I This will be the new position for 5.

I it will start with no children

13 / 26

Complexity of binary search tree operations

I We would like to know how fast the operations on a binary
search tree are.

I Recall that “Big ‘O’ ” notation seeks to provide an upper
bound.

14 / 26

Degenerate binary search trees
I The tree on the right is

a binary search tree – it
obeys the rules all such
trees have to satisfy.

I But, searching it will
not be quick at all – it
will be no better than
searching a linked list.

I (And also, we are wasting space on extra node pointers we
don’t need.)

I So in the worst case, our tree could simply be a linked list, and
search performance would be O(n).

I The tree here is called a degenerate tree.

15 / 26

Degenerate binary search trees

I For a degenerate tree,
insertion, deletion, and
search could take time
proportional to the
number of nodes in the
tree
I So all of them are

O(n).

16 / 26

Balanced binary search trees

I Ideally, we would want every node of our binary search tree to
have exactly 2 children.

I This way, insertion, deletion and search would take, at worst,
O(log n) time.

I Why?
Because in such a tree, each layer will half half the nodes in the
layer below it (until we get to the root layer, which has one
node).

I The most number of “steps” we would have to take to find a
node, is therefore the same as the number of times we would
have to halve the number of nodes in the bottom layer, to get
to 1.

I And we know that the complexity of this is O(log n).

17 / 26

Balanced binary search trees
I How much faster than O(n) is O(log n)?

I To get a feel for this – suppose we have some operation to
perform that takes 1 second, and we need to apply it to a
data-set containing one million items.

I If we had to perform the operation log2 n times, then this
would mean the time to process the whole data-set would be

log2 1 000 000
≈ 19.93 seconds

I Whereas if we had to perform the operation n times, that
would be

1 000 000 seconds
≈ 16667 minutes
≈ 278 hours
≈ 11.6 days.

18 / 26

Balanced binary search trees

I The tree on the right is
balanced, because every
node has exactly 2
children.

I A tree like this has the
least depth possible, for
its number of nodes.

I (Whereas a degenerate tree has the greatest depth possible.)

19 / 26

Balanced binary search trees

I Looking for a value in a balanced binary search tree is similar
to binary search on a sorted array.
I If we don’t need to insert or delete items, they behave exactly

the same way.
I However, a tree structure is better for handling insertions and

deletions.
I Maintaining a balanced tree may need the tree to be

re-structured when you insert and delete.
I The code for this is tricky and it won’t be covered here. But

you can read about it in the text book.

20 / 26

Use of balanced binary search trees

I Are balanced binary search trees commonly used?

I They are. They are very frequently found in the standard
libraries for programming languages, because they provide a
convenient way of:
I searching a collection of items efficiently
I adding items to the collection
I removing items from the collection

I The Java class java.util.TreeMap, from the Java standard
library, is frequently used to store elements you wish to search,
and is implemented using a balanced binary search tree.

21 / 26

Use for abstract data types

I Linked lists and binary search trees are both concrete data
structures.

I They are defined by their structure – e.g. linked list nodes
always have one pointer to another node, and contain one
value.

I However, they can be used to implement abstract data types.

22 / 26

Use for abstract data types

I For instance, suppose we wanted to define a Set abstract data
type
I A set is used for storing a collection of items, but never contains

multiple instances of an item.

I The operations we would want are:
I insert an item
I delete an item
I search to see whether some item is in the set.

23 / 26

Use for abstract data types
There are many ways we could implement the Set abstract data
type . . .

I We could implement a Set using an array (as we did for stacks
and queues).

I We will discuss briefly how to do this.

I However, this has the disadvantage that the set will have a
maximum capacity – as we have to declare the size of an array
when it is created

I Also, unless we can keep the array sorted, search will have O(n)
complexity.

I Inserting or deleting an item at the beginning of the array will
also have poor performance – both have O(n) complexity.
I They also are slow, compared to linked list operations, because

many items must be copied when this happens.

24 / 26

Use for abstract data types

I We could implement a Set using a linked list (again, as we did
for stacks and queues).

I Again, we will discuss briefly how to do this.

I This means we no longer have the restriction that our Set must
have a maximum capacity.

I However, search, insertion and deletion still have O(n)
complexity (though insertion and deletion will be faster than
for an array).

25 / 26

Use for abstract data types

I Or, we could implement a Set using a binary search tree.
I We will discuss how this could be done.

I Similar to linked lists, there is no restriction on our Set’s
maximum capacity.

I Furthermore, insertion, deletion and search now have O(log n)
complexity – a big improvement.

26 / 26

