Binary search trees

Lecturer: Dr Anwarul Patwary

1/26

Outline

We discuss:

» What is a binary search tree?
» How are they used?
» How fast are they to use?

2/26

Binary search trees

» A binary search tree is a
special type of binary tree,
with its nodes in a particular
order, which allows us to look 2 8
up values quickly.

» Notice that for a tree, every 1 4 7 10
node below the root of a tree
is the root of another tree, 3
called a subtree.

3/26

Binary search trees

In this tree:
» the root of the tree is 6

P its left child, 2, is the root
of a subtree containing 1,4 2 8
and 3.

» its right child, 8, is the root 1 4 7 10
of a subtree containing 8, 7
and 10.

4/26

Binary search tree requirements

P> To be a binary search tree, a
binary tree must satisfy the
following property:
for all nodes, the values in the
node's right subtree are
greater than the node's value.

» For example:
» 21,4 are all less than 6.
» 8,2,10 are all greater than 6.
P At the next level, 1 is less than 2 and 4 and 3 are greater than
2

» In the right subtree 7 is less than 8 and 10 is greater than 8.

5/26

Duplicate values

» If we need to handle duplicate
values, we can allow identical
values to fall either on the left
or right, but we should be
consistent about it
throughout.

6/26

Using a binary search tree

vVVvyYVvYyyYy

The primary use of a binary
search tree is to search for
values and see if they are in
the tree.

As an example: How do we
check to see if 7 is in the tree?

Start at the root.

7 is greater than 6, so if it's in the tree, it must be to the right.
Then, 7 is less than 8, so it must be left.

And we then find 7 in the tree.

7/26

Using a binary search tree

Now, let's search for 5.

» Start at the root.

» Five is less than 6, so it must
be to the left.

» Five is greater than 2, so it
must be right.

P Five is also greater than 4, so it must be right again.
» However, there is no child here. The pointer is null. This
means that 5 is not in our tree

8/26

Binary search tree algorithm

We can search the binary tree with the following algorithm:

> At every node, check to see if we have found the value we are
looking for.

» |f we do not find it, determine if it should be on the left or
right and check that subtree.

» Cntinue down the tree until there is no child node on either the
left or right.

9/26

Binary search tree algorithm

In pseudocode:

method binarySearch(aNode, key):

if aNode
return

if aNode.

return
if key >

== null:
false

value == key:
true
aNode.value:

binarySearch(aNode.right)

else:

binarySearch(aNode.left)

10/26

Binary search tree Java code

Here is a simplified version of the find method from
BinarySearchTree. java implementing this algorithm. We
assume that our tree only stores ints.

boolean find(int key, BinaryTreeNode n) {
if (n == null) { return false; }
if (n.value == key) {
return true;
} else if (key < n.value) {
return (find(key, n.left));
} else {
return (find(key, n.right));
}
}

The complete method in BinarySearchTree. java uses Java
generics, so it can store any type of data.

11/26

Inserting new values

> We can insert new values into
the tree, but they must go 6
into the correct place so that
the tree still obeys the rules 2 8
for being a binary search tree.
» Recall that 5 was not in the
tree. How do we insert it?
» The process looks similar to
search.

12/26

Inserting new values

> We start at the root
> \We compare the value to be 6

inserted with the value at this

node — 2 8

five is less than six, so we go :

left to 2 1 4 7 10
» Then we go right to 4

» and right again
but 4 has no child on this side.

» This will be the new position for 5.
» it will start with no children

v

13/26

Complexity of binary search tree operations

> We would like to know how fast the operations on a binary
search tree are.

» Recall that “Big ‘O’ " notation seeks to provide an upper
bound.

14/26

Degenerate binary search trees

» The tree on the right is
a binary search tree — it @

obeys the rules all such —L—
trees have to satisfy. { 4 ’ ‘ ’
» But, searching it will
not be quick at all — it
will be no better than [2] (’
searching a linked list. —
N

» (And also, we are wasting space on extra node pointers we
don’t need.)

» So in the worst case, our tree could simply be a linked list, and
search performance would be O(n).

P> The tree here is called a degenerate tree.

15/26

Degenerate binary search trees

> For a degenerate tree,
insertion, deletion, and
search could take time
proportional to the

l 4 i
number of nodes in the
tree
» So all of them are 2

O(n).

16 /26

Balanced binary search trees

>

>

>

Ideally, we would want every node of our binary search tree to
have exactly 2 children.

This way, insertion, deletion and search would take, at worst,
O(log n) time.
Why?

Because in such a tree, each layer will half half the nodes in the
layer below it (until we get to the root layer, which has one
node).

The most number of “steps” we would have to take to find a
node, is therefore the same as the number of times we would
have to halve the number of nodes in the bottom layer, to get
to 1.

And we know that the complexity of this is O(log n).

17/26

Balanced binary search trees
» How much faster than O(n) is O(log n)?

> To get a feel for this — suppose we have some operation to
perform that takes 1 second, and we need to apply it to a
data-set containing one million items.

> |If we had to perform the operation log, n times, then this
would mean the time to process the whole data-set would be

log, 1000 000
~ 19.93 seconds

» Whereas if we had to perform the operation n times, that
would be

1000000 seconds
~ 16667 minutes
~ 278 hours
~ 11.6 days.

18/26

Balanced binary search trees

P> The tree on the right is
balanced, because every 6
node has exactly 2
children. 2 8
P A tree like this has the
least depth possible, for
its number of nodes. 1 4 7 10

» (Whereas a degenerate tree has the greatest depth possible.)

19/26

Balanced binary search trees

» Looking for a value in a balanced binary search tree is similar

to binary search on a sorted array.
P |If we don’t need to insert or delete items, they behave exactly
the same way.

» However, a tree structure is better for handling insertions and
deletions.

» Maintaining a balanced tree may need the tree to be
re-structured when you insert and delete.

» The code for this is tricky and it won't be covered here. But
you can read about it in the text book.

20/26

Use of balanced binary search trees

» Are balanced binary search trees commonly used?

» They are. They are very frequently found in the standard
libraries for programming languages, because they provide a
convenient way of:

» searching a collection of items efficiently
» adding items to the collection
» removing items from the collection

» The Java class java.util.TreeMap, from the Java standard
library, is frequently used to store elements you wish to search,
and is implemented using a balanced binary search tree.

21/26

Use for abstract data types

» Linked lists and binary search trees are both concrete data

structures.
> They are defined by their structure — e.g. linked list nodes
always have one pointer to another node, and contain one

value.

P> However, they can be used to implement abstract data types.

22/26

Use for abstract data types

» For instance, suppose we wanted to define a Set abstract data

type
P A set is used for storing a collection of items, but never contains
multiple instances of an item.

» The operations we would want are:

P> insert an item
> delete an item
P> search to see whether some item is in the set.

23/26

Use for abstract data types

There are many ways we could implement the Set abstract data
type ...

>

| 2

We could implement a Set using an array (as we did for stacks
and queues).
We will discuss briefly how to do this.

However, this has the disadvantage that the set will have a
maximum capacity — as we have to declare the size of an array
when it is created

Also, unless we can keep the array sorted, search will have O(n)
complexity.

Inserting or deleting an item at the beginning of the array will

also have poor performance — both have O(n) complexity.
» They also are slow, compared to linked list operations, because
many items must be copied when this happens.

24/26

Use for abstract data types

» We could implement a Set using a linked list (again, as we did
for stacks and queues).
> Again, we will discuss briefly how to do this.

» This means we no longer have the restriction that our Set must
have a maximum capacity.

» However, search, insertion and deletion still have O(n)
complexity (though insertion and deletion will be faster than
for an array).

25/26

Use for abstract data types

» Or, we could implement a Set using a binary search tree.
» We will discuss how this could be done.

» Similar to linked lists, there is no restriction on our Set's
maximum capacity.

» Furthermore, insertion, deletion and search now have O(log n)
complexity — a big improvement.

26/26

