Quicksort

1/20

Outline

» What is quicksort?
» How is it implemented in Java?
> How well does it perform?

2/20

A recursive sorting algorithm

» Quicksort is a recursive sorting algorithm.

» Suppose you had to sort the following array with 16 elements:

53(49|57|35|18|11|23|62|71[90|95(87|77|92|83
» Just before starting, you notice that the array has a very
special structure:
62

53149|57(35|18|11|23 71190 95(87|77|92|83

— _/ — _/
~ ~
All smaller than 62 All largerthan 62

3/20

Divide and conquer

» This means we can now divide the problem into two smaller

’71’90’95‘87‘77‘92’83‘

problems:

‘53‘49’57‘35‘ 18’ 11‘23‘

Sort

‘11‘18‘23’ 35’49‘53‘57‘

Ll

The fence

Sort

‘71‘77’83’87‘90‘92’95’

‘11‘ 18‘23‘35‘49‘53‘57‘ 62‘71‘77‘83‘87‘ 90‘ 92‘ 95‘

» And the two “half-size” problems take much less than half the

time.

4/20

Sorting sub-arrays

» What if the array is not in this nice form?
» Then we put it into this nice form.

First we choose an element to be the “fence”, and then we
adjust the array so that the fence is in the correct position,
everything to the left of the fence is smaller than it, and
everything to the right of the fence is larger than it.

(el sl [l

— Choose the fence (we explain how later)

5/20

Sorting sub-arrays

We find out-of-place elements:

-

.49 24|77|98|53|90|11|57|95|82|87|35(92|18|71

Now increase L until reaching an element bigger than the fence:

@

.49 24|77|98|53|90|11|57|95|82|87|35(92|18|71

And decrease R until reaching an element smaller than the fence:

E

.49 24(77|98|53|90|11(57|95(82|87|35|92|18|71

6/20

Sorting sub-arrays

Then swap them over:

.49 24|18[98|53[90|11|57|95|82|87|35|92|77|71

Move @.7

.49 24118|98(53|90|11|57[95|82[87|35[92|77|71

Exchange @

.49 24|18(35|53[90|11|57|95|82|87|98|92|77|71

7/20

Sorting sub-arrays

And repeat ...

Move ;

.49 24(18|35|53|90|11|57|95|82|87|98|92| 77|71

Exchange @

.49 24|18|35|53|57|11|90|95|82|87|98|92| 77|71
1

Until R <L RIL |

.49 24|18|35|53|57[11]90|95|82|87|98|92|77|71

8/20

Terminating

When R < L, then every element to the right of L is larger than the

fence, and every element (except the fence) to the left of L is less
than the fence.

B

R

24|18|35|53|57|11|90|95|82|87|98|92| 77|71
Swap the fence
and element R
11| 49|24|18|35|53|57 90| 95| 82| 87| 98| 92| 77|71

9/20

Quicksort java code

public void partition(int[] a) {
int fence = al[0];
int left = 1;
int right = a.length-1;
while (right >= left) {
while (left <= right && a[left] <= fence)
left++;
while (right >= left && a[right] >= fence)
right--;
if (right > left) {
int swap = a[left];
alleft] = alright];

alright] = swap;
}

af0] = al[right];

a[right] = fence;

10/20

Quicksort java code

public void partition (int[]

a)

int fence = a[0];
int left = 1;

int right = a.length-1;

The first element in the array is chosen
as the fence and 1eft and right are
set up appropriately

while (right >= left) {

left++;

right-——;

while (left <= right &&

while (right >= left &&

alleft]

al[right]

<= fence)

>= fence)

if (right > left) {
int swap = alleft];
al[left] = al[right];

al[right] = swap;

}
a[0] = al[right];

al[right] = fence;

These loops
increase left and
decrease right
until they are on
swappable
elements or meet in
the middle

11/20

Quicksort java code

public void partition(int[] a) {

int fence = a[0]; 5
This swaps the two

elements if the two
indices have not met
in the middle

int left = 1;

int right = a.length-1;

while (right >= left) {

while (left <= right && al[left] = fence)
left++;
while (right >= left && alright]| >= fence)

right--;

if (right > left) {

int swap = al[left];

al[left] = alright];

. And when they do meet,

i the method finishes off by
swapping the fence into
the correct position

}
a[0] = a[right];

al[right] = fence;

12/20

QuickSort

» QuickSort is a recursive sorting method defined as follows:
» To sort an array:
» Partition the array around some fence
» QuickSort the elements of array before the fence position
» QuickSort the elements of array after the fence position

» This is a recursive definition because we have used QuickSort
in the definition of QuickSort

> We have only given the recursive part of the definition — what
is the base case?

» This is easy — if the array has 0 or 1 elements to be sorted, then
we do not need to do anything!

13/20

In-place sorting

QuickSort sorts elements in place.

private static int partition(int[] a, int start, int finish)

{

We just treat the elements
a[start]..a[finish] as the array to
int left = start+l; be partitioned, and ignore the rest

int right = finish;

int fence = a[start];

// omitted code is identical to before

a[start] = al[right];

alright] = fence; The method returns the correct
. . [Iposition of the fence after it has

return right; been located

14/20

QuickSort Java code

The actual quickSort code is as follows:

private static void quickSort (int[] a, int start, int finish)

{

if (finish-start > 0) {

int fence_position = partition(a,start,finish);«| Partltlon
quickSort (a, start, fence_position-1); 4778011 1eft
quickSort (a, fence_position+l, finish); .
) T Sort right
}
public static void quickSort (int[] a) { The pubhc method
quickSort (a,0,a.length-1); should be as Simple
} to use as possible

15/20

QuickSort Java code

» What happens when we call quickSort(a) on an array a?

» The call quickSort(a):

a ‘62‘49‘24‘77‘98‘53‘90‘11‘57‘95‘82‘87‘35‘92‘18‘71‘

First calls partition(a,0,15), which changes a to

(sx s [aa] s3] s3] 7] 2] sa[s ez] se 2] 7] =1

and returns 7 as the fence position

quickSort (a, 0, 6) quickSort (a, 8,15)
sorts the left half sorts the right half

|11|49|24|l8|35|53|57 6 90|95|82|87| 98|92|77|71|

N

16 /20

Comments on QuickSort

> Works well when the fence position ends up being roughly half
way through the array, as the two sub-problems are then about
equal in size
» |If our fence were exactly in the middle every time, then it would
take log, n recursive calls to sort the array.
» Our choice of fence in this code — position 0 — means that the
worst case for QuickSort is when the array is already ordered.
» If the array is already ordered, and we choose position 0 for our
fence —
then the items to the left of the fence will be no items at all,
and the items to the right of the fence will be all the other
items.
» And when we do a recursive call on the “right-hand” portion,
we have only reduced its size by 1;
» So the number of calls will be proportional to n.

17/20

Comments on QuickSort

» It turns out that in the worst case, QuickSort has complexity
O(n?), like insertion sort.

» But if the fence-post we choose is near the middle of the array
values, then the average number of comparisons QuickSort
makes is nlog, n.

» So, in practice, it pays to put in a little effort to ensure our
fence-post value is towards the middle of the values.

» Some possible ways of doing so:

» Pick the fence randomly
» Randomly permute the array before sorting with QuickSort
» Sample a small portion of the array, and choose the median as

fence
e.g. take the median of the first, last and mid-point values.

18/20

Java library

» You should never need to write QuickSort yourself in Java

because the Java library includes a number of optimized
methods for sorting.

» For example: Arrays.sort and Collections.sort(list)
» We will discuss the Java Collections API later.

19/20

Summary

» The Quicksort algorithm is efficient, O(nlogn) — on average —
because it breaks a large list into smaller ones and sorts those.

» However, Quicksort is not always the best solution. For
example, its worst case performance is O(n?) when the list is
already sorted.

20/20

