
Quicksort

1 / 20



Outline

I What is quicksort?
I How is it implemented in Java?
I How well does it perform?

2 / 20



A recursive sorting algorithm

I Quicksort is a recursive sorting algorithm.

I Suppose you had to sort the following array with 16 elements:

53 49 57 35 18 11 23 62 71 7795 8790 92 83

I Just before starting, you notice that the array has a very
special structure:

53 49 57 35 18 11 23

62

71 7795 8790 92 83

3 / 20



Divide and conquer

I This means we can now divide the problem into two smaller
problems:

62 71 7795 8790 92 8353 49 57 35 18 11 23

11 18 23 35 49 53 57 71 9083 8777 92 9562

11 18 23 35 49 53 57 71 9083 8777 92 9562

Sort The fence

I And the two “half-size” problems take much less than half the
time.

4 / 20



Sorting sub-arrays

I What if the array is not in this nice form?

I Then we put it into this nice form.

First we choose an element to be the “fence”, and then we
adjust the array so that the fence is in the correct position,
everything to the left of the fence is smaller than it, and
everything to the right of the fence is larger than it.

11 1824 3549 53 7162 5777 82 8790 929598

Choose the fence (we explain how later)

5 / 20



Sorting sub-arrays
We find out-of-place elements:

11 1824 3549 53 7162 5777 82 8790 929598

L R

Now increase L until reaching an element bigger than the fence:

L R

11 1824 3549 53 7162 5777 82 8790 929598

And decrease R until reaching an element smaller than the fence:

L R

11 1824 3549 53 7162 5777 82 8790 929598

6 / 20



Sorting sub-arrays
Then swap them over:

L R

L RMove

L RExchange

111824 3549 53 7162 57 7782 8790 929598

111824 3549 53 7162 57 7782 8790 929598

111824 3549 53 7162 57 7782 8790 9295 98

7 / 20



Sorting sub-arrays

And repeat . . .

L RMove

L RExchange

LRUntil R < L

111824 3549 53 7162 57 7782 8790 9295 98

111824 3549 53 7162 57 7782 8790 9295 98

111824 3549 53 7162 57 7782 8790 9295 98

8 / 20



Terminating

When R < L, then every element to the right of L is larger than the
fence, and every element (except the fence) to the left of L is less
than the fence.

LR

R

Swap the fence 

and element R

111824 3549 53 7162 57 7782 8790 9295 98

11 1824 3549 53 716257 7782 8790 9295 98

9 / 20



Quicksort java code
public void partition(int[] a) {

int fence = a[0];

int left = 1;

int right = a.length-1;

while (right >= left) {

while (left <= right && a[left] <= fence) 

left++;

while (right >= left && a[right] >= fence)

right--;

if (right > left) {

int swap = a[left];

a[left] = a[right];

a[right] = swap;

}

}

a[0] = a[right];

a[right] = fence;

}

10 / 20



Quicksort java code
public void partition(int[] a) {

int fence = a[0];

int left = 1;

int right = a.length-1;

while (right >= left) {

while (left <= right && a[left] <= fence) 

left++;

while (right >= left && a[right] >= fence)

right--;

if (right > left) {

int swap = a[left];

a[left] = a[right];

a[right] = swap;

}

}

a[0] = a[right];

a[right] = fence;

}

The first element in the array is chosen 

as the fence and left and right are 

set up appropriately

These loops 

increase left and 

decrease right

until they are on 

swappable 

elements or meet in 

the middle

11 / 20



Quicksort java code
public void partition(int[] a) {

int fence = a[0];

int left = 1;

int right = a.length-1;

while (right >= left) {

while (left <= right && a[left] <= fence) 

left++;

while (right >= left && a[right] >= fence)

right--;

if (right > left) {

int swap = a[left];

a[left] = a[right];

a[right] = swap;

}

}

a[0] = a[right];

a[right] = fence;

}

This swaps the two 

elements if the two 

indices have not met 

in the middle

And when they do meet, 

the method finishes off by 

swapping the fence into 

the correct position

12 / 20



QuickSort

I QuickSort is a recursive sorting method defined as follows:
I To sort an array:

I Partition the array around some fence
I QuickSort the elements of array before the fence position
I QuickSort the elements of array after the fence position

I This is a recursive definition because we have used QuickSort
in the definition of QuickSort

I We have only given the recursive part of the definition – what
is the base case?
I This is easy – if the array has 0 or 1 elements to be sorted, then

we do not need to do anything!

13 / 20



In-place sorting

QuickSort sorts elements in place.

private static int partition(int[] a, int start, int finish)

{

int fence = a[start];

int left = start+1;

int right = finish;

// omitted code is identical to before

a[start] = a[right];

a[right] = fence;

return right;

}

We just treat the elements

a[start]..a[finish] as the array to 

be partitioned, and ignore the rest

The method returns the correct 

position of the fence after it has 

been located

14 / 20



QuickSort Java code

The actual quickSort code is as follows:

private static void quickSort(int[] a, int start, int finish) 

{

if (finish-start > 0) {

int fence_position = partition(a,start,finish);

quickSort(a,start,fence_position-1);

quickSort(a,fence_position+1,finish);

}

}

public static void quickSort(int[] a) {

quickSort(a,0,a.length-1);

}

Partition 

Sort left 

Sort right

The public method 

should be as simple 

to use as possible

15 / 20



QuickSort Java code

I What happens when we call quickSort(a) on an array a?

I The call quickSort(a):

11 1824 3549 53 7162 5777 82 8790 929598

First calls partition(a,0,15), which changes a to

62 7724 9849 53 7111 9018 82 8757 929535

and returns 7 as the fence position

62 7724 9849 53 7111 9018 82 8757 929535

quickSort(a,0,6) 

sorts the left half

quickSort(a,8,15) 

sorts the right half

a

16 / 20



Comments on QuickSort

I Works well when the fence position ends up being roughly half
way through the array, as the two sub-problems are then about
equal in size
I If our fence were exactly in the middle every time, then it would

take log2 n recursive calls to sort the array.
I Our choice of fence in this code – position 0 – means that the

worst case for QuickSort is when the array is already ordered.
I If the array is already ordered, and we choose position 0 for our

fence –
then the items to the left of the fence will be no items at all,
and the items to the right of the fence will be all the other
items.

I And when we do a recursive call on the “right-hand” portion,
we have only reduced its size by 1;

I So the number of calls will be proportional to n.

17 / 20



Comments on QuickSort

I It turns out that in the worst case, QuickSort has complexity
O(n2), like insertion sort.

I But if the fence-post we choose is near the middle of the array
values, then the average number of comparisons QuickSort
makes is n log2 n.

I So, in practice, it pays to put in a little effort to ensure our
fence-post value is towards the middle of the values.

I Some possible ways of doing so:
I Pick the fence randomly
I Randomly permute the array before sorting with QuickSort
I Sample a small portion of the array, and choose the median as

fence
e.g. take the median of the first, last and mid-point values.

18 / 20



Java library

I You should never need to write QuickSort yourself in Java
because the Java library includes a number of optimized
methods for sorting.
I For example: Arrays.sort and Collections.sort(list)

I We will discuss the Java Collections API later.

19 / 20



Summary

I The Quicksort algorithm is efficient, O(n log n) – on average –
because it breaks a large list into smaller ones and sorts those.

I However, Quicksort is not always the best solution. For
example, its worst case performance is O(n2) when the list is
already sorted.

20 / 20


