Java Collections API

Lecturer: Dr Anwarul Patwary

1/30



Outline

We discuss:

» What is a collection?

» What is a collection framework, and how is this realized in
Java?

» What are some of the core interfaces and implementations in
the Java Collections framework?

2/30



Collections

» A collection (sometimes called a container) is an object that
groups multiple elements into a single unit.
> We might use collection objects to store ...
» cards in a poker hand
P emails in a mail folder
» a mapping of names to phone numbers, for an address book.
» If you have used Java — or almost any other programming
language — you would already have some familiarity with
collections.

3/30



Types of collection

» We have now seen a number of sorts of collection:
» arrays
P> queues
» stacks
> lists
P> trees
P> sets
» maps
» In future lectures, we will examine graphs

4/30



Types of collection

Why do we have so many types of collection?

» Different tasks have different requirements for the complexity
of operations

5/30



Types of collection

Why do we have so many types of collection?

» Different tasks have different requirements for the complexity
of operations
P> e.g. sometimes it is important we be able to access any
individual item in a collection in constant time — arrays and
structures built on them allow for this.

5/30



Types of collection

Why do we have so many types of collection?

» Different tasks have different requirements for the complexity
of operations
P> e.g. sometimes it is important we be able to access any
individual item in a collection in constant time — arrays and
structures built on them allow for this.
» Different sorts of collection make trade-offs between space and

time efficiency

5/30



Types of collection

Why do we have so many types of collection?

» Different tasks have different requirements for the complexity

of operations
P> e.g. sometimes it is important we be able to access any
individual item in a collection in constant time — arrays and
structures built on them allow for this.

» Different sorts of collection make trade-offs between space and
time efficiency

> It is better to use a collection that offers just the operations we
needed, than to try to use one that is ill-suited.

5/30



Operations on collections

Typical operations on a collection are to:

P add something to the collection

» find whether (and where) an item is in a collection
> retrieve an item

P> remove or replace an item

» clone the whole collection (make a copy)

6/30



Using Java Collections

In Java, built-in (API) classes can be accessed in several ways:

1. by providing their “full name”

java.util.LinkedList<String> b =
new java.util.LinkedList<>();

Here LinkedList is a class in the API package java.util.

2. by importing the class

import java.util.LinkedList;

V2
LinkedList<String> b = new LinkedList<>();

3. You can also import all classes in a package:

import java.util.x;

7/30



Java collections packages

Most general data structures in the Java API are in the util
package. There are:

1. Collections:

LinkedList<E>, ArrayList<E>, PriorityQueue<E>, Set<E>,
Stack<E>, TreeSet<E>

2. Maps:

SortedMap<K, V>, TreeMap<K,V>, HashMap<K, V>
3. and others:

[terator<E>, BitSet

These allow you to create most of the data structures you will ever
need.

However, it is important to be able to compare the performance and
understand the limitations of each.

8/30



A collections framework

» A collections framework is a unified architecture for
representing and manipulating collections.

» Collections frameworks contain the following:
> Interfaces
» Implementations
» Algorithms

9/30



Collection interfaces

Interfaces are abstract data types that represent collections.

» This means collections can be manipulated independently of
the details of their representation.

» For instance, if something obeys the rules for being a List or a
Stack, say — then we can treat it as one in code, regardless of
how it is implemented.

» (We will note that there are other possible ways of
implementing a List interface besides using the singly-linked
list data structure we have seen. List is more general than
that.)

10/30



Collection interfaces

» In object-oriented (OO) languages, interfaces generally form a
hierarchy

» For example - we have seen that a Stack ADT has push and
pop methods.

> We could generalize this, and imagine an ADT called
“Collection”, say, that has generic add and remove methods.

» In an OO language like Java, we would represent this by having
Stack inherit from Collection.

» In Java, an interface that inherits from an interface is said to
extend the original interface.

11/30



Collection implementations

The implementations are the concrete implementations of the
collection interfaces.

P In essence, they are reusable data structures.

12/30



Collection algorithms

The algorithms are methods that perform useful computations on
objects that implement collection interfaces.

» For example, we have seen sorting and searching algorithms —
these are common sorts of algorithms we would wish to use
with collections.

P> Note that the algorithms can be used with any collection that

implements the appropriate interface.
» They are said to be polymorphic —
> that is, the same method can be used on many different
implementations of the appropriate collection interface.

P In essence, algorithms are reusable functionality.

13/30



Java collections framework

» The Java Collections Framework forms a hierarchy, shown
below, which we will discuss.
» The Java online documentation discusses the Collections

Framework in more detail, and provides links to individual
classes and interfaces.

Iterable
YA\

Collection
JA

[PriorityQueueJ [Dequej

ArrayDeque | (T inkedHashSet

14 /30


https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

Maps

» There is a separate hierarchy in the collections framework,
containing maps; these do not inherit from Collection.

N

[SortedMap] [HashMapJ

NavigableMap

Thus the hierarchy consists of two distinct trees — a Map is not a
true Collection.

15/30



Use of Java generics

>

>

Note that all the core collection interfaces are generic.

For example, this is the declaration of the Collection interface.

public interface Collection<E> {
The <E> syntax tells us that the interface is generic.

When you declare a Collection instance you can and
should specify the type of object contained in the collection:

Collection<String> myCollection;

As we have seen previously — specifying the type allows the
compiler to verify at compile-time that the type of object you
put into the collection is correct, thus reducing errors at
runtime.

16 /30



Core collection interfaces

We will consider some of the core collection interfaces.

Collection

the root of the collection hierarchy.

A collection represents a group of objects known
as its elements.

The Collection interface is the “least common
denominator” that all collections implement
It is used to pass collections around and to
manipulate them when maximum generality is
desired.

Some types of collections allow duplicate
elements, and others do not.

Some are ordered and others are unordered.

17/30



Collection api

The methods for Collection include:

> int size()

P> boolean isEmpty()

> boolean contains(Object element)
> boolean add(E element)

» boolean remove(Object element)
> Tterator<E> iterator()

18/30



Core collection interfaces

Set

>

>

>

A collection that cannot contain duplicate
elements.

This interface models the mathematical set
abstraction

It is used to represent sets such as the cards
comprising a poker hand, say

19/30



Core collection interfaces

List

» An ordered collection (sometimes called
a sequence).

P Lists can contain duplicate elements.

» The user of a List generally has precise control
over where in the list each element is inserted
and can access elements by their integer index
(position).

20/30



Core collection interfaces

Queue

A collection used to hold multiple elements prior
to processing.

Besides basic Collection operations, a

Queue provides additional insertion, extraction,
and inspection operations.

We have seen that queues typically order
elements in a FIFO (first-in, first-out) manner.
An exception are priority queues, which order
elements according to a supplied comparator or
the elements’ natural ordering.

21/30



Core collection interfaces

Deque

A collection used to hold multiple elements prior
to processing.

Besides basic Collection operations,

aDeque provides additional insertion, extraction,
and inspection operations.

Deques can be used both as FIFO (first-in,
first-out) and LIFO (last-in, first-out).

In a deque elements can be inserted, retrieved
and removed at both ends.

22/30



Core collection interfaces

Map

» An object that maps keys to values.
> A Map cannot contain duplicate keys; each key
can map to at most one value.

23/30



Core collection implementations

We have seen some of the core interfaces; what about the
implementations?

» The Java Collections framework comes with many
implementation classes for the interfaces.

» The most commonly used implementations are ArrayList,
HashMap and HashSet.

24/30



ArrayList Class

>
>

>

Resizable-array implementation of the List interface.
Implements all optional list operations, and permits all
elements, including null.

In addition to implementing the List interface, this class
provides methods to manipulate the size of the array that is
used internally to store the list.

Because this is implemented using an array ...
the size, isEmpty, get, set, iterator, and listlterator operations
run in constant time.
The add operation runs in amortized constant time

> that is, adding n elements requires O(n) time.
All of the other operations run in linear time (roughly
speaking).
The constant factor is low compared to that for the LinkedList
implementation.

25/30



HashMap Class

» Hash table based implementation of the Map interface.

» This implementation provides all of the optional map
operations, and permits null values and the null key.

» This class makes no guarantees for the order of the map.

» This implementation provides constant-time performance for
the basic operations (get and put).

26/30



HashSet Class

» This is the basic implementation the Set interface that is
backed by a HashMap.

> |t makes no guarantees for iteration order of the set and
permits the null element.

» This class offers constant time performance for basic
operations (add, remove, contains and size), assuming the hash
function disperses the elements properly among the buckets.

27/30



LinkedList Class

» Doubly-linked list implementation of the List and Deque
interfaces.

» Implements all optional list operations, and permits all
elements (including null).

28/30



PriorityQueue Class

» PriorityQueue class was introduced in Java 1.5.

» PriorityQueue is an unbounded queue based on a priority heap
and the elements of the priority queue are ordered by default in
natural order or we can provide a Comparator for ordering at
the time of instantiation of queue.

» The head of the Java priority queue is the least element based
on the natural ordering or comparator based ordering, if there
are multiple objects with same ordering, then it can poll any
one of them randomly. When we poll the queue, it returns the
head object from the queue.

» PriorityQueue implementation provides O(log n) time for
enqueing and dequeing method.

29/30


http://www.journaldev.com/780/java-comparable-and-comparator-example-to-sort-objects

Further reading

Further reading

For further reading, see the Java Collections Framework Tutorial
(http://www.journaldev.com/1260/java-collections-framework-
tutorial)

30/30


http://www.journaldev.com/1260/java-collections-framework-tutorial
http://www.journaldev.com/1260/java-collections-framework-tutorial

