Maps

Lecturer: Dr Anwarul Patwary

1/18

Outline

» What is a map?
> Map representations

2/18

What is a map?

» Often in programs, we'll want to be able to look up some data,
using another piece of data.

» For instance —

» we may have a record of students and theirs marks for an exam,
and want to look up a particular mark, given the name of a
particular student

» or we might have a record of cities and their populations, and
want to look up what the population is, given the name of a
particular city.

» When talking about maps, the thing we want to retrieve — the
mark, in the first example — is called a value,
and the input we provide in order to retrieve it is called a key
(the student name, in this example).

3/18

What is a map?

» Mathematically, we can consider a map to be a function from
one domain (the domain of keys) to another (the domain of

values).
» In fact, when talking about functions, we often describe their

domain and codomain by saying the function “maps from” the
domain to the codomain.

4/18

Domain and codomain

As an example, consider a function isEven(n), which takes a single
natural number n, and tells us whether n is even or odd.

We would say the domain of the function is the natural numbers,

and the codomain is the booleans (true and false).

domain ={0, 1, 2, 3...}

n isEven(n)
0 true
1 false
2 true
3 false

‘\\\\\\\\\\\\

codomain = {true,false}

5/18

Finite, many-to-one functions

When considering them as data structures, we will normally be
concerned with maps where the set of keys is finite.

Additionally, maps represent the sort of function called “many to
one" — multiple keys may map to the same value.

Students Exam marks

6/18

Terminology

Students Exam marks

We use the word “image” to refer to “the thing mapped to”.

So we say that "92 is the image of Alice".

7/18

Map ADT

As an abstract data type, the operations we typically want a map to
support include:

>
>

>

isEmpty(): return true if the map is empty, false otherwise.

isDefined(k) or hasKey(k): return true if the key k is defined in

the map, false otherwise.

assign(k,v) or set(k,v): assign the value v as the image of the

key k.

image(k) or get(k): return the image of the key k if it is

defined.

Otherwise we might throw an exception, or return a special

value to (like null) to indicate the key is not present.

> Note that if we return null, then it is impossible to distinguish

between the case where the key doesn’t appear in the map, and
the case where it does appear, but maps to the null value.

» Nevertheless, this is what the Java implementation of Map does.

deassign(k) or remove(k): if the image of the key k is defined,
make it undefined.

8/18

Representing maps with linked lists

We can consider a map to be a list of pairs of things.

For instance, this map:

Students Exam marks

could be represented as the three-item list:

[(Alice, 92), (Bob, 65), (Carol, 65)]

9/18

Linked list implementation in Java

In order to implement a map in this way, we need a class to
represent a key—value pair.

We can do this as follows:

class Pair<K,V> {
K key;
V value;

public Pair (K key, V value) {
this.key = key;
this.value = value;

}

10/18

Linked list implementation in Java

Given a Pair class, we can now start to define an implementation
of the Map ADT based on linked lists:

public class MapLinked<K,V> {
private ListNode< Pair<K,V> > list;

// ... methods will go here ...

11/18

Linked list implementation in Java

We can then implement the methods of our map using operations
on a linked list:

vVvyyvyy

isEmpty () by checking whether the 1ist is null

hasKey (k) by doing sequential search for the key

get (k) by doing sequential search for the key

set by doing sequential search for the key, and changing the
value (or, if the key is not found, creating a new ListNode
containing that key—value pair)

remove by doing sequential search for the key, and removing
that node from the list.

12/18

Linked list performance

However, the performance is not especially good — most operations
will have O(n) complexity (where n is the number of keys in the

map).
Operation Complexity

isEmpty 0(1)
hasKey O(n)
get O(n)
set O(n)
remove O(n)

13/18

Binary search tree implementation

A more efficient way of implementing the map ADT is to use binary
search trees.

If we want to do this, our keys and pairs must implement the
interface Comparable — which lets us compare two things to see if
one is less than or greater than the other.

We change the start of our Pair class slightly:

class Pair<K extends Comparable<? super K>,V> implements Comparable {
K key;
V value;

public Pair (K key, V value) {
this.key = key;
this.value = value;

}

// methods go here

The line at the start of the class means “"Whatever type K you use
for a key must be something you can compare with another key; and
you can compare key—value pairs". 14/18

Making pairs comparable

And we add a compareTo method to our Pair:

@Override
public int compareTo(Pair<K,V> other) {
return this.key.compareTo (other.key);

}

} // end of class

15/18

BST implementation

Now we can implement the methods of our map ADT using
operations on a binary search tree:

>
>

| 4

isEmpty () just calls BinarySearchTree.isEmpty ()
hasKey (k) calls BinarySearchTree.find (), and checks
whether the result is null

get (k) calls BinarySearchTree.find (), and returns the
value from the resulting BinaryTreeNode

set (k,v) calls BinarySearchTree.find () to see if the key
is already defined.

If it is, we set the value of the resulting pair; if it is not, we
call BinarySearchTree.insert () to insert a new pair.
remove (k) by calling BinarySearchTree.remove().

16/18

BST implementation

The Java code looks like this:

public class MapBST<K,V> {
private BinarySearchTree< Pair<K,V> > bst;

public boolean isEmpty() { return bst.isEmpty(); }
public boolean hasKey(K key) {
return
bst.find(new Pair(key, null)) == null;
}
public V get(K key) { return
bst.find(new Pair(key, null)).value;
}

public V set(K key, V value) { Pair<K,V> result =
bst.find(new Pair(key, null));
if (result == null) {
bst.insert(new Pair(key, value));

} else {
result.value = new Pair(key, value);
}
}
public V remove(K key) { bst.remove(new Pair(key, null));
}
// ... constructor and other methods go here ...

17/18

BST implementation performance

The performance now is better — many operations will now have
O(log n) complexity, since that is the complexity of the underlying
BST operations.

Operation Complexity

isEmpty 0(1)

hasKey O(log n)
get O(log n)
set O(log n)
remove O(log n)

In fact, this is more or less how the TreeMap class in the Java
Collections framework is defined.

18/18

