
Outline

We discuss:
I What is a tree?
I What are they used for?
I How can they be implemented?

2 / 24



Trees

I Trees are a data structure that occurs in many real-world
situations.

I We have . . .

genealogical trees organisational trees
biological hierarchy trees evolutionary trees
population trees book classification trees
probability trees decision trees
induction trees design trees
graph spanning trees search trees
planning trees encoding trees
compression trees program dependency trees
expression/syntax trees fruit trees

...
...

I Additionally, many other data structures are based on trees
3 / 24



Example – a family tree

I How could you represent your family members in a computer?

I We could possibly use a list – but that doesn’t represent very
well the hierarchy in a tree.

4 / 24



Example – a family tree

I How could you represent your family members in a computer?
I We could possibly use a list – but that doesn’t represent very

well the hierarchy in a tree.

4 / 24

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary



Example – a family tree

If we were drawing a family tree, we might use a representation like
this:

I Note that not all family information is shown in this tree. For
example, we only show one of two parents.

5 / 24

Md Anwarul Kaium Patwary



Example – a family tree

How is this better than a list representation?

I One reason is that the hierarchical structure contains more
information than a list

I We know family relationships between everyone by examining
the tree.

I Additionally – though it’s not obvious in this case – storing
data in trees can make it much faster to search the data.

6 / 24



Example – a family tree

How is this better than a list representation?

I One reason is that the hierarchical structure contains more
information than a list

I We know family relationships between everyone by examining
the tree.

I Additionally – though it’s not obvious in this case – storing
data in trees can make it much faster to search the data.

6 / 24



Tree terminology

I Each person is represented by a node in the tree.
I Nodes can have child nodes as well as a parent node.

I We use the terms “child” and “parent”, even when using trees
for things besides families.

I A node with no parent, the topmost node, is called the root of
the tree.

I A leaf node is one that does not have any children.
I Francis, Felicity, and Gilbert are all leaf nodes.

7 / 24

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary



Tree terminology, cont’d

I The depth of a node is the length of the path from the root to
the node.

I The height of a node is the length of the path from the node
to the deepest leaf.
I Thus, the height of a tree is the number of “levels”.

I Nodes with no children (leaves) are sometimes called external
nodes;

I and nodes with one or more children are internal nodes.

8 / 24



Binary trees

I A binary tree is a specific type of tree, in which each node has
at most 2 children.

I Binary trees an important base for other data structures such
as binary search trees and priority queues.

9 / 24

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary



Binary tree nodes

How can we implement a binary tree?

Tree nodes can be implemented in a similar way to nodes in a linked
list.

Each node has some data it stores, and two pointers to other nodes.

The code below is a simplified version of the code in
BinaryTreeNode.java.

public class BinaryTreeNode {

int value; // data value associated with a node
BinaryTreeNode left; // reference for the left child
BinaryTreeNode right; // reference for the right child
// constructor and other methods go here
// ...

}

10 / 24



Binary tree nodes

I In the family tree we saw, the associated data was each
person’s name.
I Names could be represented with a String.

I But we would not normally use a binary tree to represent a
family tree, as people may have more than two children.

11 / 24

Md Anwarul Kaium Patwary



Tree Traversal

Suppose we wanted to visit all the elements of a binary tree.
I This is called traversing the tree.
I Tree traversal is used to search for an element, to print out all

elements, and so on.

There are di�erent ways of doing tree traversal.

12 / 24

Md Anwarul Kaium Patwary



“Pre-order” traversal (NLR)

I One possible order
would be:
I Visit a node
I Then, for each of its

child nodes, do the
same.

I This would give us the
order:
George, Gilbert, Tom,
Alan, Nicola, Rachel,
Francis, Alexander . . .

13 / 24



“Pre-order” traversal (NLR)

I This is called “pre-order”
because we visit each
node before we visit its
children.

I A way of remembering
this is to think of the
mnemonic “NLR” – we
visit the Node, then its
Left child, then the
Right child.

14 / 24



“Pre-order” traversal (NLR)

I This order can also be
described as being
depth-first – if there is
a long path “down” the
tree, we will travel all
the way down it before
moving to branches
further to the right.

15 / 24



“Pre-order” traversal (NLR)

I Tree traversals are most
straightforwardly
implemented using
recursive methods.

I Pseudocode for doing a
pre-order traversal
would be:

method preorder(aNode):

visit aNode

preorder(aNode.left)

preorder(aNode.right)

16 / 24



Example of pre-order traversal

In the BinaryTreeNode class, you can see a method which uses
pre-order traversal to print nodes:

public void printPreOrder () {

if (this != null)

System.out.println(value.toString()); //visit root
if (left != null)

left.printPreOrder(); //visit left
if (right != null)

right.printPreOrder(); //visit right
}

17 / 24



“Post-order” traversal (LRN)

I To do post-order
traversal, given some
node, we
I do post-order

traversal of its left
child

I do post-order
traversal of its right
child

I visit the node

I This would give us the
order:
Gilbert, Tom, Francis,
Alexander, Rachel . . .

18 / 24



“Post-order” traversal (LRN)

I This is called
“post-order” because we
visit each node after we
visit its children.

I A way of remembering
this is to think of the
mnemonic “LRN” – we
process the node’s Left
child, then the Right
child, and then we visit
the Node.

19 / 24



“Post-order” traversal (LRN)

Pseudocode for post-order
traversal would be:

method postorder(aNode):

postorder(aNode.left)

postorder(aNode.right)

visit aNode

20 / 24



“In-order” traversal (LNR)

I For “in-order” traversal, we
I process the left child
I then process the right child
I then visit the node

I Hence the mnemonic LRN can be used
to remember it.

I For the tree on the right, this would
give the order:
D, B, A, E, C, F

A

B C

FED

21 / 24



“Level order” traversal

I Finally, we can do breadth-first or level
order traversal.

I In this form of traversal, we visit –
I the root
I then all nodes at level 1 (children of

the root)
I then all nodes at level 2

(grand-children nodes)
I That is, starting at root, visit nodes

level by level (left to right).
I This type of traversal does not suit a

recursive approach because you have to
“jump” from subtree to subtree.

A

B C

FED

22 / 24

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary



“Level order” traversal

I The order of visiting nodes if we did
level order traversal would be:
A, B, C, D, E, F

A

B C

FED

23 / 24



Further reading

You should see the textbook, and the UWA lecture notes file
Topic12-Traversals.pdf for more details on tree traversal.

24 / 24

Md Anwarul Kaium Patwary

Md Anwarul Kaium Patwary


