
Data Structures
and algorithms
STACKS AND QUEUES

WEEK 1
LECTURER: DR ANWARUL PATWARY

Outline

u What are stacks?
u Basic operations of stack in Java
u What are Queues?
u Basic operations of stack in Java.

What is a Stack
u Stack of Books

3

Stack ADT 4

u A stack is data structure of ordered items such that
items can be inserted and removed only at one end.

u stack: a list with the restriction that insertions/deletions
can only be performed at the top/end of the list
u Last-In, First-Out ("LIFO")
u The elements are stored in order of insertion

but we do not think of them as having indexes.
u The client can only add/remove/examine

the last element added (the "top").

u basic stack operations:
u push: Add an element to the top.
u pop: Remove the top element.
u peek: Examine the top element.

Applications of Stacks
u Programming languages:

u method calls are placed onto a stack (call=push, return=pop)

u Matching up related pairs of things:
u find out whether a string is a palindrome
u examine a file to see if its braces { } and other operators match

u Sophisticated algorithms:
u searching through a maze with "backtracking"
u many programs use an "undo stack" of previous operations

5

Class Stack 6

Stack<Integer> s = new Stack<Integer>();
s.push(42);
s.push(-3);
s.push(17); // bottom [42, -3, 17] top

System.out.println(s.pop()); // 17

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

Stack limitations/idioms
u Remember: You can’t loop over a stack like you do a list.

Stack<Integer> s = new Stack<Integer>();
...
for (int i = 0; i < s.size(); i++) {

do something with s.get(i);
}

u Instead, you pull contents out of the stack to view them.
u Idiom: Remove each element until the stack is empty.

while (!s.isEmpty()) {

do something with s.pop();
}

7

What is a Queue?

8

9

Queues

u What is a queue?
u A data structure of ordered items such that items can be inserted only

at one end and removed at the other end.

u Example
u A line at the supermarket

Queues
u queue: Retrieves elements in the order they were added.

u First-In, First-Out ("FIFO")

u Elements are stored in order of
insertion but don't have indexes.

u Client can only add to the end of the
queue, and can only examine/remove
the front of the queue.

u basic queue operations:
u add (enqueue): Add an element to the back.

u remove (dequeue): Remove the front element.

u peek: Examine the front element.

queue

front back

1 2 3
addremove, peek

Queue ADT interface
u Let's write our own implementation of a queue.

u As is done in the Java Collection Framework, we will define queues as an
ADT by creating a queue interface.

public interface Queue<E> {

void clear();
boolean isEmpty();
E peek();

E remove(); // remove from back
void add(E value); // add to front
int size();

}

Implement with array?
public class ArrayQueue<E> implements Queue<E> {

private E[] elements;
private int size;

...

u A queue is tough to implement efficiently with an unfilled array.
u The array is fast to add/remove at the end, but slow at the front.

queue.add(26); // client code
queue.add(-9);
queue.add(14);

queue.remove();

index 0 1 2 3 4 5 6 7 8 9
value 26 -9 14 0 0 0 0 0 0 0
size 3

