
Data Structures
and algorithms
INTRODUCTION
WEEK 1
LECTURER: DR ANWARUL PATWARY

Outline

 What are data structures?
 What are algorithms?

Data structures

 Data Structures-
 Is the way of organizing data.

 It makes program more efficient.

We discuss some examples

87, 90, 65, 60, 56

Why do you need Data structures?

 Proper representation of data to achieve efficiency.
 It also allows us to achieve an important object-oriented

programming concept: component reuse.

Type of Data structure

• Primitive: int, double, float, and char.
• Non-primitive: linked-list, stack, queue, graph

Data Structure

Primitive Type
Non-primitive

Type

Basic operations

 1. Create
 2. Selection
 3. Updating
 3. Searching
 5. Sorting
 6. Merging
 7. Delete

45, 76, 87, 89, 90

Selecting a data structures

Select a data structure as follows:
1. Analyze the problem to determine the basic operations that must be

supported.
2. Quantify the resource constraints for each operation.
3. Select the data structure that best meets these requirements.

Algorithm

 Algorithm is a set of instructions the computer will follow to solve a
problem.

 An algorithm solves some computational problem.
 Algorithms are the fundamental building blocks from which

programs are constructed. Only by fully understanding them it is
possible to write very effective programs.

pseudocode
Step 1: Get the student grade. (Input)
Step 2: Sum of students grade.
Step 3: Summation/number of students.
Step 4: output

Basic Java

 Java is an object-oriented programming language.
 Code is organized into classes, which have instance variables and

methods.

class HelloWorld {

public static void main(String args []){

System.out.println(" Hello World");

}

}

Array

An array is defined as a set of finite number of homogeneous
elements or same data items.
It means an array can contain one type of data only, either all
integer, all float-point number or all character.

Fixed-size collections
 An ArrayList is used when the size of a collection

is not known in advance, or might vary
 But in some situations, the collection size can be

pre-determined from the data
 For this situation, a special fixed-size collection type is

available: the array
 Arrays can store object references or primitive values
 Arrays use a special more-concise syntax
 Arrays are very common in a wide range of programming

languages

11

Uses of arrays
 Arrays are used when we have large numbers of same-

typed values or objects that we want to operate on as
a collection
 A collection of temperatures that we want to average
 A collection of student marks that we want to analyse
 A collection of names that we want to sort

 e.g. Bureau of Meteorology monthly data
 We know there are twelve months in a year

12

ALBANY
Max 25.1 25.1 24.1 21.5 18.7 16.6 15.7 15.9 17.4 18.8 20.8 23.4
Min 13.5 14.3 13.3 11.6 9.8 8.1 7.4 7.4 7.9 9.0 10.6 12.3
Rain 28 25 29 66 102 104 126 104 81 80 46 24

PERTH AIRPORT
Max 31.4 31.7 29.5 25.2 21.4 18.7 17.6 18.3 20.0 22.3 25.4 28.5
Min 16.7 17.4 15.7 12.7 10.2 9.0 8.0 7.9 8.8 10.1 12.4 14.6
Rain 8 14 15 46 108 175 164 117 68 48 25 12

Arrays
 An array is an indexed sequence of variables

of the same type

 The array is called a
 Its elements are called a[0], a[1], a[2], etc.

 Each element is a separate variable
 Notice that indexing starts from 0

 Same as with ArrayList and String

a[0] a[1] a[2] a[3] a[4]

a

13

a[5]

Declaring arrays
 An array variable is declared using the usual syntax

 The [] denotes an array variable

int[] a;

 Declares a to be a variable representing an array of ints

double[] temps;

 Declares temps to be a variable representing an array of doubles

String[] names;

 Declares names to be a variable representing an array of Strings

Student[] marks;

 Declares marks to be a variable representing an array of Students

14

Creating Arrays I

 An array is an object in a Java program
 Therefore the declaration simply creates a variable to “point to” the

array, but does not create the array itself
 Hence the declaration

int[] a;

allocates a space called a, big enough to hold an
object reference, and initialised to null

a

null The declaration allocates
space for the array
reference, but not for the
array itself

15

Creating Arrays II

 In order to actually create the array, we must use the keyword new
(just like creating any other object)

a = new int[7];

0 0 0 0 00 0

a
An object is created that
contains seven variables of
type int

16

 The expression a.length denotes the size of the
array currently pointed to by the variable a
 We will see examples of its use later

 The size of an array is a property of the object
that is created, not the variable that points to it

 An array variable can point to different arrays
at different times, possibly with different sizes

int[] a;

a = new int[7];

System.out.println(a.length);

a = new int[666];

System.out.println(a.length);

The size of an array 17

7
666

• The seven variables do not have individual names
• They are referred to by the array name, and their

index

Creating Arrays III

a[0]

0
a[1]

0
a[2]

0
a[3]

0
a[5]

0
a[4]

0
a[6]

0

a

18

Legal indices go
from 0 to
a.length–1

Referencing array elements

a[0]

0
a[1]

0
a[2]

7
a[3]

-1
a[5]

0
a[4]

15
a[6]

17

a[4] = 15;

a[2] = 7;

a[3] = 2 * a[2] – a[4];

a[6] = a[0] + 17;

19

• Array elements can be used in the same ways
and in the same contexts as any other variable of
that type

Referencing array elements

a[0]

0
a[1]

0
a[2]

7
a[3]

-1
a[5]

0
a[4]

15
a[6]

17

a[4] = 15;

a[2] = 7;

a[3] = 2 * a[2] – a[4];

a[6] = a[0] + 17;

20

• Array elements can be used in the same ways
and in the same contexts as any other variable of
that type

Indexing arrays
 A lot of the power of arrays comes from the fact that

the index can be a variable or an expression

int x = 3;

a[x] = 5;

a[3-x] = a[2*x] * 2 + 10;

 This is especially useful when arrays are manipulated
inside loops

a[0]

44
a[1]

0
a[2]

7
a[3]

5
a[5]

0
a[4]

15
a[6]

17

21

Indexing arrays
 A lot of the power of arrays comes from the fact that

the index can be a variable or an expression

int x = 3;

a[x] = 5;

a[3-x] = a[2*x] * 2 + 10;

 This is especially useful when arrays are manipulated
inside loops

a[0]

44
a[1]

0
a[2]

7
a[3]

5
a[5]

0
a[4]

15
a[6]

17

22

• sum({5,8,6,9,7}) returns 35

• Here i is an element of the array a
• For-each loops work the same way with arrays as with
ArrayLists

Summing the integers in an array

private int sum(int[] a)
{

int sum = 0;
for (int i : a)
{

sum += i;
}
return sum;

}

23

accumulating variable

	Data Structures and algorithms
	Outline
	Data structures
	Why do you need Data structures?
	Type of Data structure
	Basic operations
	Selecting a data structures
	Algorithm
	Basic Java
	Array
	Fixed-size collections
	Uses of arrays
	Arrays
	Declaring arrays
	Creating Arrays I
	Creating Arrays II
	The size of an array
	Creating Arrays III
	Referencing array elements
	Referencing array elements
	Indexing arrays
	Indexing arrays
	Summing the integers in an array

