Overview

» How can we implement the Queue abstract data type using a
linked list?

2/11



Queue ADT implementations

» We have seen previously how to implement the Queue ADT
using arrays.

» But we saw that this had some disadvantages — for instance,
the queue had a fixed maximum capacity.

» We can instead implement the Queue ADT using a linked list
as the underlying data structure, which gives us more flexibility
(though it makes some operations slower).

3/11



Example linked list code

» We will discuss the code in the LinkedListQueue. java file.

4/11



Queue ADT operations

Recall the operations a queue should support:

> A Queue() constructor to create an empty queue
» enqueue(int item) to add an item to the queue
> int dequeue() to remove an item from the queue

5/11



Outline of the Queue ADT implementation

» We will keep references to two things — the first and last
elements of the queue.

» For convenience, we will also maintain a length variable as
before to keep track of the number of elements in the queue.

6/11



Creating an empty queue

» When creating an empty linked list queue, we set both head
and tail to null and length to O, since there are no
ListNodes in the queue yet.

> We will also define an isEmpty() method, the same as we did
in the array implementation.

» We don't need an isFull() method (though if we wanted,
we could write one that simply returns false all the time).

» We provide operations for users of the class to “get” the head,
tail and length values.

» These methods are called “getters” or accessor methods.

7/11



The dequeue operation

» We will discuss how to dequeue elements.

» The dequeue operation removes an element from the front
(head) of the queue, so we look at the head link.

» If the queue is empty we can't dequeue anything, so we throw
an exception to flag the error.

» Where should the new head be? It will be the next element

after the first (which has now left the queue).
» The new head is referenced by head.next, so we set head =
head.next.
> We also set length = length - 1 to track that we have one
fewer elements.

8/11



Garbage collection

» What happens to the old head nodes? Won't they be floating
around and taking up space?

» No. The Java virtual machine (JVM) looks after this through a
process called “garbage collection”.

» When objects are no longer being used anywhere in a program,
the memory that was allocated to the object is released, and
can be used to create more new objects.

9/11



The enqueue operation

> We will discuss how to enqueue elements.

> We will need to
P create a new ListNode
» add the new node to the back of the queue — so we will alter

the “tail” link.

» We consider two cases:
1. the queue does not have any elements yet (it 1sEmpty), and

2. the new element is being appended to the end of a queue with

elements.

10/11



The enqueue operation

> We need to take core about the order in which we do things —
we must make sure we maintain links to all the nodes we need,
and don't “lose” any.

11/11



