
Overview

I How can we implement the Queue abstract data type using a

linked list?

2 / 11



Queue ADT implementations

I We have seen previously how to implement the Queue ADT

using arrays.
I But we saw that this had some disadvantages – for instance,

the queue had a fixed maximum capacity.

I We can instead implement the Queue ADT using a linked list
as the underlying data structure, which gives us more flexibility

(though it makes some operations slower).

3 / 11



Example linked list code

I We will discuss the code in the LinkedListQueue.java file.

4 / 11



Queue ADT operations

Recall the operations a queue should support:

I A Queue() constructor to create an empty queue

I enqueue(int item) to add an item to the queue

I int dequeue() to remove an item from the queue

5 / 11



Outline of the Queue ADT implementation

I We will keep references to two things – the first and last

elements of the queue.

I For convenience, we will also maintain a length variable as

before to keep track of the number of elements in the queue.

6 / 11



Creating an empty queue

I When creating an empty linked list queue, we set both head

and tail to null and length to 0, since there are no

ListNodes in the queue yet.

I We will also define an isEmpty() method, the same as we did

in the array implementation.

I We don’t need an isFull() method (though if we wanted,

we could write one that simply returns false all the time).

I We provide operations for users of the class to “get” the head,

tail and length values.

I These methods are called “getters” or accessor methods.

7 / 11



The dequeue operation

I We will discuss how to dequeue elements.

I The dequeue operation removes an element from the front

(head) of the queue, so we look at the head link.

I If the queue is empty we can’t dequeue anything, so we throw

an exception to flag the error.

I Where should the new head be? It will be the next element

after the first (which has now left the queue).

I The new head is referenced by head.next, so we set head =
head.next.

I We also set length = length - 1 to track that we have one

fewer elements.

8 / 11



Garbage collection

I What happens to the old head nodes? Won’t they be floating

around and taking up space?

I No. The Java virtual machine (JVM) looks after this through a

process called “garbage collection”.

I When objects are no longer being used anywhere in a program,

the memory that was allocated to the object is released, and

can be used to create more new objects.

9 / 11



The enqueue operation

I We will discuss how to enqueue elements.

I We will need to

I create a new ListNode
I add the new node to the back of the queue – so we will alter

the “tail” link.

I We consider two cases:

1. the queue does not have any elements yet (it isEmpty), and

2. the new element is being appended to the end of a queue with

elements.

10 / 11



The enqueue operation

I We need to take core about the order in which we do things –

we must make sure we maintain links to all the nodes we need,

and don’t “lose” any.

11 / 11


