Big ‘O’ Notation

Lecturer: Dr Anwarul Patwary

1/34

Outline

» How can we describe how fast or efficient an algorithm is?
» What is asymptotic complexity?
» What is “Big ‘O’ " notation?

2/34

Introduction

| 2

>

>

If someone says they have a “fast” or “efficient” algorithm for
some task, what exactly do they mean?

They don't mean some exact time the algorithm takes to run —
that could differ from computer to computer.

Even if you and | were both running the same sorting algorithm
that someone said was “efficient”, and running it on the same
data ...

if my computer is old and slow, or | am running lots of other
programs on it at the same time —

and your computer is fast and new —

then we would expect the algorithm to take different amounts
of time on each computer.

3/34

Comparing running time

» So we can't describe how “fast” some algorithm is by saying “It
takes so many seconds” — that will vary from computer to
computer.

» And even on the same computer — if we run the sorting
algorithm once to sort, say, four items, and then again, to sort
four billion items, we expect the second task to take much
longer.

» The same algorithm is being used, and it's just as efficient in
each case, but it's working with different data.

4/34

Asymptotic complexity

P Instead, we compare algorithms using something called

asymptotic complexity.
» And we have a notation, “Big ‘O’ " (or “Big Oh") notation, for
writing down different sorts of asymptotic complexity.

5/34

Asymptotic

> “Asymptotic” means “the way something behaves, as a variable
it depends on increases towards infinity".
> Let's look at an example.

6/34

Number of characters in a string

» Suppose | want to count the number of characters in a string.

» We can imagine one way to do this — we start at the first
character in the string, and “walk” along it, incrementing the
number of characters we have seen each time by 1.

> And when we get to the end, we'll know the total number of
characters in the string.

7/34

Linear time

» Using this method, we would expect that, if we count the
number of characters in a 1-million-character string, and the
number of characters in a 2-million-character string, the second
task will take roughly twice as long as the first.

» When describing complexity, we often use the variable n to
denote the size of our input. In this case, it means the length
of the string being counted.

8/34

Linear time

» In this case, when we double the size of the input — that is, we
double n — we expect the running time of the program to

double as well.
> We call two things that are related in this way, linearly related.

9/34

Growth as n tends towards infinity

» Why are we interested in the behaviour of our algorithm “as n
tends towards infinity”?

> Well, for very small strings, it may not be true that the
run-time of the algorithm is exactly linearly related to n.

» Perhaps when the algorithm starts, there will be some time
needed to do things like initialize variables, and so on — let's
say these take 4 milliseconds on my computer.

» And suppose counting the length of a 10-character array takes
14 milliseconds, and counting the length of a 20-character
array, 24 milliseconds.

P Is two times 14 equal to 247 It is not.

10/34

Growth as n tends towards infinity

» So for these small arrays, the relationship between n (the size
of our input) and the run-time of the program is not exactly
linear.

> But as n gets bigger and bigger, the 4 milliseconds needed to

initialize variables will be a smaller and smaller fraction of the
running time.

» And as n “tends towards infinity”, the relationship will be linear.

11/34

Notation for linear growth

> We say that this algorithm runs “in linear time".
» And we write this in “Big ‘O’ " notation as O(n).
» What is the formal definition of what O(n) means?

12/34

Formal definition of O(n)

» Well, suppose we have a function f(x) describing the running
time of an algorithm.

» And suppose we have a second function, g(x), which we would
like to say is the “order of complexity” of f(x).

» When are we allowed to do so?

» We are allowed to do so when, beyond a certain point, f(x) is
no bigger than some constant multiple C of g(x).

13/34

Diagram of two functions f(x) and g(x)

' ' ' ' ' ' ' '
t t t t t t t t
1 2 3 4 5 6 * H

[Image courtesy Wikimedia Commons, https://en.wikipedia.org/wiki/File:Big-O-notation.png]

14 /34

https://en.wikipedia.org/wiki/File:Big-O-notation.png

Formal definition of O(n)

» In the diagram shown, there is a certain point, and a constant

C, beyond which f(x) is no bigger than C x g(x).
» That point is labelled xp; and it looks like we could give C the

value 1.

15/34

Our string-length example

» This formal definition is true of our string-length example as
well.

> We imagined that the formula for the running time of that
algorithm (on my computer, in milliseconds) was f(n) = 14+ n.

» We would like to say that the algorithm has linear running
time; so we're proposing that there's a function g(n) = n
which describes this running time.

P> Are we allowed to say the algorithm has linear running time,
according to the formal definition?

16/34

Our string-length example

» We may do so if we can supply a constant C, and a “threshold
point” xg, beyond which f(n) is always less than or equal to

C x g(n).
i.e., for all values of n where n > xp,

f(n) < C x g(n).

» Is there such a C, and such an xp?
Yes, there is.

» We will let C = 2, for the moment, and take a look at the
graphs of f(n) and 2 x g(n).

17/34

Graph of our string-length example

50

40

30

20

f(n)

2 x g(n)

Xo= (14,28)

10

20 30

40

18/34

Graph of our string-length example

» From the graph, we can see that there is a point xp — where
n = 14 — beyond which, f(n) is always less than or equal to

C x g(n).

» So we may say that g(n) describes the asymptotic complexity
of our algorithm.

» Since g(n) = n, we use the notation O(n) to write this.

(If, say, g(n) were instead equal to n?, we would use the
notation O(n?).)

19/34

Informal intuition

» But we will not make you work too much with the formal
definition.

» Instead, we will just ask you to remember that it means,
roughly: when we say the complexity of some algorithm is
O(something) — where the “something” is some formula
involving n — we mean that as the size of our input grows larger,
that formula is a bound on the running time of our algorithm.

20/34

Constant time

P> Let's look at another sort of complexity an algorithm could
have.

> We could have an algorithm where, no matter how large our
input grows, it always takes the same length of time to run.

P> Let's see an example.

21/34

Counting string-length by cacheing

P> Imagine again that we are wanting to count the length of
strings.

» But instead of strings that are 10, or 20, or even a million
characters long, we are now working with strings that are
billions of characters long.

» For strings this big, we decide that even our O(n) algorithm
isn't fast enough.

» So we try something different . ..

22/34

Counting string-length by cacheing

» Whenever we first construct a string, presumably we know at
that point how big it is.

» So together with the actual string, we store a number, its
length.

» And if we join two strings together, say — then we know the
length of the new string is just the sum of the lengths of the
original two strings.

» Eventually, our program produces the billions-of-characters-long
string we want to know the length of.

23/34

Counting string-length by cacheing

» How can we find its length? We just look at the number we
stored with it describing its length.

We could imagine that we have a class that looks something
like this:

(public class KnownLengthString {
//fields (attributes)
public int strLength;
public String str;
// ... methods and constructors ..

}

. J

» So to find the length of the string, we just look at the value of
strlength.

» How long will this take us? It will take the same length of time,
regardless of how large the string is.

» You may sometimes see this sort of strategy referred to as
cacheing (storing) the length so that we can use it quickly later. 24/34

Complexity of our new string-length algorithm

» What is the complexity of our new algorithm?

> Well, it will always take the same length of time, regardless of
the length n of the string.

Perhaps on my computer, it takes 2 milliseconds.

» So what is the “Big ‘O’ " complexity of the algorithm? It is
O(1).

» Because we can come up with a value of C (in this case, 2)
and a value of xp (in this case, 0) such that for all strings with
length greater than xpg, C x 1 is a bound on the run-time of the
program.

» \We say that our new algorithm “runs in constant time” (with
respect to the size of the input).

25/34

Drawbacks of our new string-length algorithm

» So our new string-length algorithm is much faster than the
previous, O(n) algorithm.

» But it comes with some drawbacks.

» For instance, we now have to spend a little bit of memory, for
each string, storing the length. If we were storing many, many
strings, this might become significant.

» Our code will also be a bit more complicated to write — every
time we create a new string (for instance by joining other
strings together) we will need to correctly calculate and store
its length.

26 /34

Other common sorts of complexity

» We have seen an algorithm which has linear, O(n) complexity
» And another that has constant, O(1) complexity
» But there are many other formulas we sometimes see.

27 /34

Advantages of Big ‘O’ Notation

» Big ‘O’ complexity is unaffected by running-time being doubled,
halved, etc (in fact, being multiplied by any constant).

> Which is good, because if it wasn't, algorithms would have
different complexity on (say) your fast laptop as opposed to my
slow laptop — and we want a measure which jgnores those
differences.

» Instead, Big ‘O’ Notation tells us about the general shape of
the run-time graph as the size of input tends towards infinity.

28/34

Examples of complexity types - O(1)

0O(1)

» O(1): constant time.
» As the size of input increases, the run-time of the algorithm remains

constant.
» Examples: reading from a variable; looking up a cell from an array

29/34

Examples of complexity types - O(n)

O(n)

» O(n): linear time.

P As the size of input increases, the run-time of the algorithm increases
proportionately.

» Examples: inspecting each element of an array or list; any loop
(e.g. a “for” loop) that iterates over the input.

30/34

Examples of complexity types - O(n?)

0(n?)

> O(n?): quadratic time.

» As the size of input increases, the run-time of the algorithm increases in
proportion to the square of the size of the input.

» Examples: algorithms with nested “for” loops:

for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
// ... some operation
}
}
31/34

Choosing algorithms

» We say that O(n?) algorithms are “asymptotically slower" than
O(n) algorithms.
> Meaning, the O(n?) algorithm might actually run faster than
the O(n) algorithm, for small values of n.
» But there's some point beyond which, as the size of the input n
grows, the O(n?) algorithm is always slower.
» So if we have the choice between an O(n) and an O(n?)
algorithm, which should we choose?

32/34

Choosing algorithms

> It depends on exactly what task we are doing.

> If the O(n?) algorithm is easier to code than the O(n)
algorithm, and we know we will only be dealing with relatively
small inputs, then perhaps the O(n?) algorithm is fine — we
probably won't know until we measure how long it takes.

> But the larger the input, the more of a problem the run-time of
our O(n?) algorithm will become, so eventually, we may need
to spend time carefully coding the trickier O(n) algorithm.

33/34

Complexity types

> We will see other sorts of run-time complexity later — for
instance, algorithms that take logarithmic time (written as

O(log n)).

34/34

