Sorting with merge sort

Lecturer: Dr Anwarul Patwary

1/19

Outline

We discuss:

» What is the idea behind merge sort?
» How is it implemented?

» How does merge sort compare with other popular sorting
algorithms?

2/19

Merge sort

> Merge sort is based on the idea that
P it's easier to sorting short lists than long lists
» if we have two sorted lists, it's easy to “merge” them into a
longer sorted list.
» For instance, suppose we have the following two (very short)
sorted lists: [2, 5] and [3, 4].
P |t is easy to see that we can merge these into a longer sorted
list:
[2, 3, 4, 5]

3/19

Merging lists

> We will consider the process of merging sorted lists first.

» Suppose we have the following two sorted lists:
[1, 3,4, 7] and [2, 5, 6, 8].

> It might seem easy to us to know how to merge these — but we
need to express it in a form the computer can use.

4/19

Merging lists

» The idea is: we start at the front of each list; since they're
sorted, we know one of those elements will be the first element
in the merged list.

» Then, we “step” along each list, deciding from which list we

will draw the next element to go in our merged list.
» One incorrect idea is to just alternate between the lists — but
that won't work.
» |If you try this for the lists above, you'll see it works for the first
three elements, then produces a wrong result.

5/19

Merging lists

P> Let's try this for the two lists above . ..

6/19

Complexity of merging

> What is the big ‘O’ complexity of merging two sorted lists?
» We can describe it in terms of the length of the output list.
> (Note that in previous cases, we have described complexity in
terms of the input data set — but we can use whatever is
convenient.)
» If the final list contains n numbers — we couldn’t have done
more than n comparisons.
» So — we need at most n comparisons to correctly merge the two
lists;
» And therefore the merge algorithm runs in linear time, or has

O(n).

7/19

Sorting in merge sort

> Merge sort is what is called a “divide and conquer” algorithm —
it breaks a big problem into many much smaller problems.
» The major parts of the merge sort algorithm can be described
as follows.
» To sort an array using a method mergeSort:
> split the array in two, at the middle. (If we have an array with
an odd number of elements, that's fine — we can arbitrarily
decide which of the two sub-lists will be the bigger.)
> recursively call mergeSort on each of the lists.
> merge the two lists.

8/19

Sorting in merge sort

Let's see how merge sort works when applied to the following list:

38

27

43

82

10

9/19

Sorting in merge sort

First, the recursive calls to mergeSort will split the array into half,
each time:!

38 (27|43 (3|9(82]10

/.

38 (27|43 |3 9(82]10

! ;
v 4N

38 27

8 10

_ 1

2 10

And eventually, we have a set of “lists” which only contain a single
element; which means each of them can be considered sorted.

!Image adapted from Wikimedia Commons diagram by Vineet Kumar.
10/19

https://commons.wikimedia.org/wiki/File:Merge_sort_algorithm_diagram.svg

Merging in merge sort

And once our initial list has been split into length-1 lists, it is easy
to apply the “merge” algorithm to merge them:

38 27 43 3 9 82 10
27 | 38 3143 9| 82 10
2\
3 (27 (38|43 9 (10|82

N

319|110 |27 (38|43 |82

So we end up with a completely sorted list.

11/19

Java code for merge sort

The overall merge sort algorithm is implemented like this, in
SortingAlgorithms. java:

public static void mergeSort(short[] arr) {
mergeSort(arr, 0, arr.length-1);

3

private static void mergeSort(short[] arr, int 1, int r) {
if (1<) {
int mid = (1 + r) / 2;
mergeSort(arr, 1, mid);
mergeSort(arr, mid + 1, r);
merge(arr, 1, mid, r);
}
}

We will discuss this implementation.

12/19

Java code for merging

The Java code for merging is a little more complicated.

> First, we will copy the elements from our input lists, into two
new arrays we create for this purpose.

> Then when we do the “merge”, we can write the results of the
merge into the array arr (our original array).

private static void merge(short[] arr, int 1, int mid, int r) {
int 1lsize = mid - 1 + 1;
int rsize = r - mid;
short[] left = new short[lsize];
short[] right = new short[rsizel;

for (int i = 0; i < 1lsize; i++) {
left[i] = arr[l + i];

}

for (int j = 0; j < rsize; j++) {
right[j] = arr[mid + 1 + jl;

}

13/19

Java code for merging
The code which actually does the merging is below.

» while there are still elements in both lists, we copy an element

from either the left or the right list.

» Once this is done — there may be “left over” elements in one of

}

the lists.
So we copy those as well.

int i = 0; int j = 0; int k = 1;
while (i < lsize && j < rsize) {
if (left[i] < right[jl) {
arr[k++] = left[i++];
} else {
arr[k++] = right[j++];
}
}
while (i < 1size) { // Copy rest of first half
arr [k++] = left[i++];
}
while(j < rsize) { // Copy rest of second half
arr[k++] = right[j++];
}

14 /19

Performance of merge sort

» Recall that for insertion sort, sorting had a worst-case running
time of O(n?) — the algorithm contained a nested loop.
» How does merge sort compare?

15/19

Performance of merge sort

| 2

>
>

It turns out that merge sort has a worst-case running time of

O(nlog n).

Why is this?

The “splitting” part of merge sort will take log n running time —

as we have seen, it requires log, n steps to repeatedly divide a

number into two until you reach 1.

And at each “level” —i.e., for each of those log, n steps — we

will have to do a merge

» and we have seen that the run-time of the merge algorithm is

linear — that is, O(n) — with respect to the size of the merged
list.

The way in which these combine is a little complicated, and we

will not cover it —

but it turns out that the merge sort algorithm as a whole ends

up with O(nlog n) complexity.

16/19

Performance of merge sort

» This turns out to be the best possible "big ‘O’ " running time
can have for sorting a list (in the worst case).

» This doesn't mean merge sort will always be faster than
insertion sort.

» It could well be that some other sorting algorithms might
perform better on lists up to a certain size.

17/19

Costs of merge sort

» The good performance of merge sort does come with some
disadvantages.

» For insertion sort, we could sort the array “in place™:
we didn’t have to allocate any extra arrays besides the one we
were sorting.

» But for merge sort, when we do the “merge"” step, we did have
to allocate extra arrays — we copied elements from the original
array, into a “left” and a “right” temporary array.

» So although merge sort has a better run-time complexity than
insertion sort, it will use more memory.

» Usually, however, the cost of the extra memory is not
unreasonable.

18/19

Use of merge sort

P> Merge sort uses the fewest number of comparisons of the
popular sorting algorithms.

» So, it is often a good choice for a general-purpose sorting
algorithm.

» Merge sort was the sorting algorithm used for sorting arrays of

objects in versions of Java up until Java version 7
» From version 7 of Java onwards, the sorting algorithm used is a
more complex one invented by Tim Peters.
» However, that algorithm still uses general ideas taken from
merge sort.

19/19

https://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html#sort(java.lang.Object%5B%5D)
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(java.lang.Object%5B%5D)

