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Questions for Week 1
Monday
Warm up Questions

1) We have two monkeys, a and b, and the boolean variables aSmile and bSmile indicate if each is smiling. We are in trouble if they are both smiling or if neither of them is smiling. Which of the following statements returns true if and only if we are in trouble.
[image: ]

a. return (aSmile || bSmile); 
b. return (aSmile && bSmile);
c. return (aSmile == bSmile); 











Algorithms and Data Structures

2) In your own words, complete the following sentences.


An algorithm is … 




A data structure is ….



Big O Notation


3) Group the following functions into equivalent Big-Oh functions: 

x2, x, x2 + x, x2 − x, and (x3 / (x − 1)).





4) Solving a problem requires running an O(N) algorithm and then afterwards a second O(N) algorithm. What is the total cost of solving the problem? Why?






5) Solving a problem requires running an O(N) algorithm and then afterwards an O(N2) algorithm. What is the total cost of solving the problem?  Why?











6) In terms of n, what is the running time of the following algorithm to compute x to the power n (xn)? Can you think of a faster approach?  

public static double power( double x, int n ) {
	double result = 1.0;
	for( int i = 0; i < n; i++ ) {
		result = result * x;
	}
	return result;
}






7) Which of the following statements make sense or not ? Why?  

a. My algorithm is O(2N2)  


b. My algorithm is > O(N2)  


c. My algorithm is O(N2 + N) 


d. A method with one loop nested inside another must be O(N2)  


e. If method A is O(N) and method B is O(N) then an algorithm which performs A followed by B is also O(N) 

8) Consider an array implementation of the stack ADT.  Give a short description of an implementation for each of its functions in words.  What is the big Oh of each of these operations, and why? 

isEmpty 
isFull 
pop 
push 








9)   The following method searches an array (stored in block) to see whether the same item appears twice.    If so, it returns true.  If no duplicates are found it returns false.

public boolean hasMatch (int[] block) {
  boolean found = false;
  for (int i=0; i < block.length; i++) {
    for (int j=0; j <  block.length; j++) {
found = found || 
        (i != j && block[i]==block[j]);
    }
  }
  return found;
}  
 

If the function f(x) describes the time performance of the  hasMatch method, where x denotes the size of the parameter block, which of the following is the smallest big O for f(x)? Why? 

a. f(x) is O(1) 

b. f(x) is O(log n) 

c. f(x) is O(n) 

d. f(x) is O(n2)



10) Write the simplest algorithm you can think of to determine whether an integer i exists such that Ai = i in an array, A, of increasing integers. Now, try to give a more efficient algorithm, explaining your reasoning. What is the big O running time for each of your algorithms?






11)  Method hasTwoTrueValues returns true if at least two values in an array of Booleans are true. What is the Big-O running time for all three implementations proposed below?


// Version 1
public boolean hasTwoTrueValues( boolean [ ] arr ) {
int count = 0;
for( int i = 0; i < arr.length; i++ )
	if( arr[ i ] )
		count++;
return count >= 2;
}

// Version 2
public boolean hasTwoTrueValues( boolean [ ] arr ) {
for( int i = 0; i < arr.length; i++ )
	for( int j = i + 1; j < arr.length; j++ )
		if( arr[ i ] && arr[ j ] )
			return true;
return false;
}

// Version 3
public boolean hasTwoTrueValues( boolean [ ] arr ) {
for( int i = 0; i < arr.length; i++ )
	if( arr[ i ] )
		for( int j = i + 1; j < arr.length; j++ )
			if( arr[ j ] )
				return true;
return false;
}
 




12)  The function methodX searches an array as follows. 

public boolean methodX (int[] block) {
  boolean found = false;
  for (int i=0; i<block.length; i++) {
    for (int j=0; j<block.length; j++)
      found = found || block[i]==block[j];
  }
  return found;
}  

Which of the following is true of this function? Why?

a. It never returns true. 

b. It returns true only if the same item appears twice.

c. It returns true if the last two items compared are the same.

d. It always returns true.



  

For more Java revision questions see 

http://teaching.csse.uwa.edu.au/units/CITS2200/Tutorials/tutorial02.html 
Tuesday

Abstract data types

13)  (from Weiss) A combination lock has the following basic properties


· the combination (a sequence of three numbers) is hidden.
· the lock can be opened by providing the combination.
· the lock can be closed without requiring the combination.
· the combination can be changed, but only by someone who knows the current combination.

    Suppose you are designing an ADT to represent a combination lock.
a. What operations would you expect this ADT to have ?




b. Specify the behaviour of the ADT by describing (in words) the complete behaviour of each operation.









c. Highlight the error cases that need to be considered for each operation?













Read: http://teaching.csse.uwa.edu.au/units/CITS2200/Labs/labsheet02.html     which explains how to write and implement interface classes in Java.

d. Write a Java interface for the Lock ADT you have specified.




e. Write a Java implementation for your lock ADT using an integer to store the combination.
a. // An implementation of a Lock using an integer to store the combination  
b. public class LockInt implements Lock {    

i. private int combination;    

ii. ... 
c. }






f. Challenge: Write a second implementation (LockString) which stores the hidden combination as a String.





Stacks and Queues

14)   On a stack, the result of the sequence push(21) push(14) pop() push(7) pop() is an empty stack? 



TRUE or FALSE?   Why? 





15)  With a queue, the value 3 is returned by enqueue(1) enqueue(2) enqueue(3) dequeue()?  




TRUE or FALSE?   Why? 



16)  Show the results of the following sequence: 

add(4), add(8), add(1), add(6), remove(), and remove() 

when the add and remove operations correspond to the basic operations (push, pop or enqueue, dequeue) in the following:  


a. Stack  





b. Queue 









Wednesday

First Sorting Algorithms

17)  Use the array a to answer the following questions. 

int[] a = new int[] { 2,8,9,1,6,3,4,5 } 

a.  The first element swapped by selection sort is a[4]  

TRUE or FALSE ?  Why ?  
	

b. What is the index of the second element to be swapped? 

 

c. What is the index of the third element to be swapped? 
 


18)  Which of the following statements about Insertion sort and Selection sort are TRUE and which are FALSE.  

a. There is no difference in running time of Selection sort and Insertion sort since they are both O(N2)   



b. Insertion sort is faster than Selection sort because it makes fewer comparisons 



c. For arrays of the same size, Selection sort has the same number of comparisons for any array order   




d. For arrays of the same size, Insertion sort has the same number of comparisons for any array order 








19)  Challenge Question:  Write code to swap the values of two integers in Java without using any additional variables (such as temp)?


Recursion

 Some Common Errors when using recursion
1. The most common error in the use of recursion is forgetting a base case. 
2. Be sure that each recursive call progresses toward a base case. Otherwise, the recursion is incorrect. 
3. Overlapping recursive calls must be avoided because they tend to yield exponential algorithms. 
4. Using recursion in place of a simple loop is bad style. 
5. Recursive algorithms are analyzed by using a recursive formula. Do not assume that a recursive call takes linear time.



20)  Write a recursive method that calculates factorial of a positive number. Choose a suitable exception for its error cases. 














21)  The n-th harmonic number is the sum of the reciprocals of the first n natural numbers. So Hn = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n. 

Explain what is wrong with each of the following three definitions of a recursive method to calculate the nth Harmonic number? Then write a correct Java implementation and test it. 


public static double H(int N) { 
	return H(N-1) + 1.0/N; 
} 



public static double H(int N) { 
	if (N == 1) return 1.0;
	return H(N) + 1.0/N;
}




public static double H(int N) { 
	if (N == 0) return 0.0;
	return H(N-1) + 1.0/N; 
} 




22)  Write a recursive method that returns the number of 1s in the binary representation of N. Use the fact that this number equals the number of 1s in the representation of N/ 2, plus 1, if N is odd. 

First: what is the base case ? what is the step case? 
Second: express this recursion in a Java method. 
Third: write some test cases to test your code. 
[ source: Princeton intro to cs]
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Recursive Sorting Algorithms

23)     You should always choose quicksort or mergesort instead of selection sort or insertion sort, because the first two are faster. 

	TRUE or FALSE? Why?




24)   Quicksort has many traps for the unwary programmer. 

a. What happens if the array is already sorted ?




 
b. What happens with duplicate elements? 





c. Why is finding the pivot a critical step?






25)  Design and run a set of experiments to compare the running times of selection, insertion sorting algorithms under the following conditions. Using the Java class, SortingAlgorithms.java, provided with your course materials.  Add new code to run your experiments. 
 
a. Lists containing the same value in every position. 
b. Lists that are already sorted. 
c. Lists that have been sorted in reverse order (ie highest to lowest). 
d. Integers 
e. Real numbers of type double 
f. Strings  

Write a lab report on the results of your experiments.  Which algorithms perform best, under what conditions, and why?  And which perform worst, under what conditions and why?

You can base your code on the JUnit tests provided, or use Java's System timing for your experiments like this: 

long startTime = System.currentTimeMillis();
callOperationToTime();
long endTime   = System.currentTimeMillis();
long totalTime = endTime - startTime;




26)   Challenge Problem: The implementation of Quicksort provided in your notes chooses the fence as the first element in the array.  Implement additional code to call QuickSort using one of the (better) methods suggested in the text book for choosing the fence:  a. Choose the middle element as pivot  b. Median-of-three pivot.  Include the running times of the new version in your experiments above.



 Java revision Questions
Sources: UWA tutorial01, Weiss

27)  What kind of "thing" is each part of the following Java statement? How does it work? 

System.out.println(myObject); 









28)  What is meant by each part of the statement: 

public static void main(String[] args) 








29)  What is meant by each part of the statement: 

import java.util.ArrayList; 







30)  What is meant by the statement: 

import java.io.*; 








31)  What is the difference between a checked exception and an unchecked exception? 








32)  What options exist for dealing with exceptions?  






33) What is the value of red == xxx after these two statements and why?

java.awt.Color red = new java.awt.Color(255,0,0);
java.awt.Color xxx = new java.awt.Color(255,0,0);

a. A reference with the same value as xxx, because an assignment expression has the same value as the expression on the right hand side of the assignment.
b. We cannot tell, because it depends on details of the implementation that are hidden from the users.
c. A runtime error occurs, because == can only be used for primitive types.
d. FALSE, because they are references to different objects, even though the objects contain identical data.
e. TRUE, because they both represent the colour red.



34)   Assume there are size items in a suitably large array. Which of the following moves all items in an array one place to the right? Why?

a. for (int i=0; i<size; i++) block[i+1]=block[i];


b. for (int i=1; i<=size; i++) block[i+1]=block[i];


c. for (int i=size; i>0; i--) block[i]=block[i-1];


d. for (int i=size; i>0; i--) block[i-1]=block[i];


35)   An array contains N numbers, and you want to determine whether two of the numbers sum to a given number K. For instance, if the input is 8, 4, 1, 6 and K is 10, the answer is yes (4 and 6). A number may be used twice. 


a. Describe (in words) an O(N2) algorithm to solve this problem.  





b. Suppose the list is sorted.  Describe (in words) an O(N) algorithm to solve this problem.






c. Describe (in words) an O(N log N) algorithm to solve the problem when the list is not sorted.







d. Write Java code for your solutions for parts a. and c. and compare the running times of your algorithms.   





36)  Challenge: Write a method that removes all duplicates in an array A of N items.  The array is passed as a parameter to the method. Return the number of items that remain in A. 

Hint: see Q24 for ideas for an O(N log N) algorithm for this problem.
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