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Wide Use of Parallelism

• Exploiting parallelism is often difficult

• Hardware moves fast, problems grow fast, writing 

code takes time

• parallelism is used in many applications
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Engineering
• Airfoil design
• Internal combustion engines 

/ electric drivetrains
• High variable problems
• Industrial processes
• …

Science
• Drug design
• Human genome sequencing
• …
Industry
• Serving the largest websites
• Financial trading
• …



Specialised Hardware and Software
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• The fastest software for particular hardware will be 

written specifically for that hardware.

• The fastest hardware for a particular software will 

be built specifically for that software.

• Two main options (we’ve now seen both)

 Shared memory address space

 Message passing 
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Why Parallel Code Slower 

• Sometime parallel code can be slower than serial code

• A few key factors that determinate the performance 

of the parallel code include:

 parallel task granularity,

 communication overhead, 

 load balancing among processes,

 false sharing memory/cache.
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Parallel Task Granularity

• In parallel computing, granularity (or grain size) of a 

task is a measure of the amount of work (or 

computation) which is performed by that task.

• The granularity of the parallel task must be enough 

to overleap the parallel model overheads (parallel 

task creation and communication between them).

• In order to reduce the communication overhead, 

granularity can be increased. Coarse grained tasks 

have less communication overhead but they often 

cause load imbalance.
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Communication Overhead
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• Every time one process intends to communicate with 

others, it has the cost of creating/sending the message 

and in case of using a synchronous communication 

routine there is also the cost of waiting for the other 

processes to receive the message. 

• Reduce the amount of communication and 

synchronisation between parallel tasks. 

• Potential solutions: 

 computation instead of communication, 

 asynchronous communications, 

 collective communications，
 faster communication hardware.



Communication Overhead

10



Load Balancing among 

Processes/Threads
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• A good load balancing can maximise the work 

done in parallel.

• Each process/thread should take approximately 

the same time to finish their work.

• If processors have different speeds, then it might 

need a more complex task distribution



False Sharing Memory/Cache

• False sharing is a well-known performance issue on 

SMP systems, where each processor has a local cache.

• It occurs when threads on different processors modify

variables that reside on the same cache line.

• This circumstance is called false sharing because each 

thread is not actually sharing access to the same 

variable.
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False Sharing Memory/Cache (Example)

• This code block cause false sharing
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double sum=0.0, sum_local[NUM_THREADS];
#pragma omp parallel num_threads(NUM_THREADS)
{
int me = omp_get_thread_num();
sum_local[me] = 0.0;

#pragma omp for
for (i = 0; i < N; i++)
sum_local[me] += x[i] * y[i];

#pragma omp atomic
sum += sum_local[me];

}



False Sharing Memory

• There is a potential for false sharing on array sum_local.

• This array is dimensioned according to the number of 

threads and is small enough to fit in a single cache line.

• When executed in parallel, the threads modify different, 

but adjacent, elements of sum_local which invalidates the 

cache line for all processors.
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Improving Programs with Parallelism

16

• Install OpenMP and MPI locally

 You can simulate running multiple nodes on a single 

machine with mpiexec/mpirun calls

• Write a serial version of your solution first

 Serial code is vastly easier to parallelise

• Write a parallel version of your solution

 Break the serial code into multiple steps/components

 Measure the elapsed time of each step/component

 Optimise the most time consuming step/component

 Optimise all the steps/components that can be parallised



Implementing Parallel Programs
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• Write a ‘dummy’ parallelised version of your code first

 Have each process/thread compute its bounds first 

and print them out

 Test your solution for different configurations (e.g. 

different number of threads) and check correctness

 Gradually implement actual parallel computation

• Read documentation

 there may be a function to help make your life easier

• Test your parallel code in serial or 2 processes/threads

 A parallelised piece of code often still work if only 

one process/thread is available 



How to Write Parallel Code

18

• Use the sysadmins

 If you end up using a commercial HPC system (e.g. 

Pawsey Supercomputing Centre) use the helpdesk

• Invest in some tests

Writing a few small examples and making them 

easy to run will make testing changes easier

• Good printouts are invaluable

 It helps to quickly find out where your code may be 

bugged and what values are changing



How to Write Parallel Code
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• Make writing code easy for you

 Many IDEs / editors (CLion, VSCode, etc.) allow for a 

full remote mode. Write code directly on the 

supercomputer using your own editor

 Otherwise

o write code locally

o test locally

o commit with git

o pull the edits on the supercomputer and run



Workflow of Accelerating Programs
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Find a dominant function/step

Compute bound Memory boundCommunication bound

Find another dominant function/step

More threads 
or processes

Approximation

Cache line

Detect false sharing

Reduce precision

Non-blockingCollective

Packing Computation instead



Parallel Program Design
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• Only major difference vs. sequential design is deciding 

what should be in parallel

• Identifying separate portions of work

• Mapping concurrent tasks onto multiple processes/threads

• Distributing input, output and intermediate data

• Managing access to shared data

• Synchronising processes at various stages



Task Decomposition

• We define granularity in task decomposition

 A large number of small tasks is fine-grained

 A small number of large tasks is coarse-grained

• The degree of concurrency is the maximum number of 

parallel tasks in your program

• Coarse grained - Divide the problem into big tasks, run 

many at the same time, coordinate when necessary. 

• Fine grained - For each “operation”, divide across 

functional units such as floating point units. 
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Coarse Grained and Fine Grained

• Coarse grained example (a research project)

 Set students on different problems in a research area,

 give each person a list of task, and 

 have them do everything

• Fine grained example (writing a list of letters)

 send out lists of letters break into steps, 

 make everyone write letter text, 

 stuff envelope, write address, and apply stamp,

 then collect and mail.

• There is no clear separation of coarse and fine grained
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Task Decomposition 

• Recursive

 a large task is broken into smaller sub-tasks

 the sub-tasks can be further divided until small enough

 e.g. sorting: partition a large array into smaller arrays

• Data

 useful when a problem is built on a large data structure

 divide the structure (and thus the computation)

 decomposition can apply to: input, output, intermediate

• Exploratory

 useful when problems computations correspond to 

searching a state space of solutions

 e.g. computing chess moves

• Speculative

 useful when a program can take one of many possible paths

 speedup is related to the number of speculative paths 24



Hybrid Decomposition

• Use several decomposition methods together

• Example: finding the minimum of any array of size 

16 using 4 tasks.
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• Data parallel

 identical steps performed to different data elements

 parallelism scales with problem size

• Task graph

 parallel task can be described by task dependencies

 useful for complex, interactive or recursive problems

• Work pool

 dynamic task mapping to processes for load-balancing

 work available up-front or dynamically generated

• Master-worker architecture

 a node is selected to generate work for worker nodes

 a common parallel computing architecture

• Pipelining 

 a stream of data is passed to a set of processes 

 can be linear or more complicated 

Parallel Program Models
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Data Parallel
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• Data parallel

 identical steps performed to different data elements

 parallelism scales with problem size

• Task graph

• Work pool

• Master-worker architecture

• Pipelining 



Task Graph
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• Data parallel

• Task graph

 parallel task can be described by task dependencies

 useful for complex, interactive or recursive problems

• Work pool

• Master-worker architecture

• Pipelining 



Work Pool
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• Data parallel

• Task graph

• Work pool

 dynamic task mapping to processes for load-balancing

 work available up-front or dynamically generated

• Master-worker architecture

• Pipelining 



Master-Worker Architecture
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• Data parallel

• Task graph

• Work pool

• Master-worker architecture

 a node is selected to generate work for worker nodes

 a common parallel computing architecture

• Pipelining 



Pipelining
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• Pipelining 

 a stream of data is passed to a set of processes 

 can be linear or more complicated 
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The Structure of MPI
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• Message passing is well-suited to handling computations 

where a task is divided up into subtasks, with most of the 

processes used to compute the subtasks and a few 

processes (often just one process) managing the tasks. 



The Structure of MPI
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MPI_init

if( rank == root )
{

// Master’s work :
// Form tasks, distribute tasks, 
// receive and form results

}

if (rank !=0 )
{

//  Worker’s work:
//  receive tasks, compute tasks
//  send back to the master

}

//  Tasks that all processes need to 
do

MPI_Finalize

• Rank is used to distinguish 

processes from one to another.

• E.g. you have 8 parallel processes 

running; if you query for the current 

process rank via 

MPI_Comm_rank you'll get 0-7.

• In basic applications you'll probably 

have a "master" process on rank = 

0 that sends out messages to 

“worker" processes on rank 1-7.

• For more advanced applications 

you can divide workloads even 

further using ranks (i.e. 0 rank 

master process, 1-4 perform 

function A, 5-7 perform function B).

Notes:



The Structure of MPI- Example

35

if (id == 0) 
{ 

for (int dest = 1; dest <= numworkers; dest++) 
{ 

MPI_Send(&offset, 1, MPI_INT, dest, 1, MPI_COMM_WORLD); 
MPI_Send(&a[offset], 2, MPI_INT, dest, 1, MPI_COMM_WORLD); 
offset += 2; 

} 
for (int dest = 1; dest <= numworkers; dest++) 
{ 

MPI_Recv(&offset, 1, MPI_INT, dest, 2, MPI_COMM_WORLD, &status); 
MPI_Recv(&a[offset], 2, MPI_INT, dest, 2, MPI_COMM_WORLD, &status); 

}
}

• The master (i.e. process id == 0) circularly sends/receives 

messages to other processes by using for loop.



The Structure of MPI- Example
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else if(id !=0 )

{ 
MPI_Recv(&offset, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status); 
MPI_Recv(&a[offset], 2, MPI_INT, 0, 1, MPI_COMM_WORLD, &status); 
for (int i = 0; i < 2; i++) 
{ 

int loc = i + offset; 
a[loc] += 1; 

} 
MPI_Send(&offset, 1, MPI_INT, 0, 2, MPI_COMM_WORLD); 
MPI_Send(&a[offset], 2, MPI_INT, 0, 2, MPI_COMM_WORLD);

}

• The other processes (i.e. process id != 0) only need 

to receive and send messages to the master once.



Point to Point vs Collective
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MPI_init

if( rank == root )
{

// Master’s work :
// Form tasks, distribute tasks, 
// receive and form results

}

if (rank !=0 )
{

//  Worker’s work:
//  receive tasks, compute tasks
//  send back to the master

}

//  Tasks that all processes need to 
do

MPI_Finalize

Therefore, collective 
functions should be
written in here

• As long as "send" and 
"receive" are matched, 
point to point functions 
can be placed everywhere.

• While, a collective function 
should be executed by all 
related process. 



Common Errors Writing MPI Code
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• Doing things before MPI_Init or after MPI_Finalize

• Matching MPI_Bcast with MPI_Recv

• Only one process executes a collective operation

• Assuming your MPI implementation is thread-safe



The Structure of MPI- Incorrect Example
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• A common mistake is using receive function to 

receive messages from collective function

#include "mpi.h"
int main( int argc, char* argv[] ) 
{ 

int rank; int ibuf; 
MPI_Init( &argc, &argv ); 
MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
if(rank == 0) 
{

ibuf = 12345; 
MPI_Bcast(&ibuf, 1, MPI_INT, 0, MPI_COMM_WORLD); 

}
else ibuf = 0; 
if (rank !=0 ) 
{

MPI_Recv(&ibuf, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status);
printf("my rank = %d ibuf = %d\n", rank,ibuf);

}
MPI_Finalize(); 

}



The Structure of MPI- Correct Example
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#include "mpi.h"
int main( int argc, char* argv[] ) 
{ 

int rank; 
int ibuf; 
MPI_Init( &argc, &argv ); 
MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
if(rank == 0) ibuf = 12345; 
else ibuf = 0; 
MPI_Bcast(&ibuf, 1, MPI_INT, 0, MPI_COMM_WORLD); 
if (rank !=0 ) 
printf("my rank = %d ibuf = %d\n", rank,ibuf); 
MPI_Finalize(); 

}



Parallel Programs: Bugs and Profiling

In addition to usual, “serial” bugs, parallel programs can 

have “parallel-only” bugs, such as 

• race conditions: when results depend on specific ordering 

of commands, which is not enforced 

• deadlocks: when task(s) wait perpetually for a 

message/signal which never come

• Similarly to debugging, profiling of parallel codes deals 

both with issues common between serial and parallel 

codes (bad patterns for accessing memory, not cache 

friendly etc.), but also adds new, parallel-only issues:

 workload balancing 

 costs of communications
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Achievable Performance

• Parallelism generally can improve efficiency

 How do you know if you are making good use of a system?

• The key questions are

 Where is most of the time spent?

 What is the achievable performance, and how to get there?

• This 2nd question is often overlooked, leading to erroneous 

conclusions based on the state of compiler/runtime/code 

implementations 
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Tuning (Parallel) Code

• Typical Approach

 Profile code: determine where most time is spent

 Study code: measure absolute performance, look at 

performance counters, compare FLOP rates

 Improve code: increase FLOP rates or memory accesses

• Why this typical approach is not enough:

 How do you know when you are done?

 What is the maximal improvement you can obtain?

• Why is it hard to know?

 Many problems are too hard to solve without parallelism

 It is getting harder and harder to provide performance 

without specialised hardware 
44



Why Performance Modelling?

• What is the goal of performance modelling?

 It is not precise predictions

 It is insight into whether a program is achieving 

the performance it could, and if not, how to fix it

• Performance modeling can be used

 to estimate the baseline performance

 to estimate the potential benefit of a nontrivial 

change to the code

 to identify the critical resource 
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What is Performance Modeling

• Two different models

1. an analytic expression based on the application code

2. an analytic expression based on the application’s 

algorithm and data structures

• A series of measurements from benchmarks* are not 

performance modeling

• Why this sort of modeling

 Extrapolation to other systems

o e.g. scalability in nodes or different interconnect

 Comparison of the two models with observed 

performance can identify

o Inefficiencies in compilation/runtime

o Mismatch in developer expectations 

46*In computing, a benchmark is the act of running a computer program in order to assess the relative 
performance of an object, normally by running a number of standard tests and trials against it.



Different Performance Models

• Simulation:

 Very accurate prediction, little insight beyond specifics 

of the simulation itself

• Traditional Performance Modelling (PM):

 Focuses on accurate predictions

 Tool for computer scientists, not application developers

• PM as part of the software engineering process

 PM for design, tuning and optimisation

 PMs are developed with algorithms and used in each 

step of the development cycle
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Example

• Lets look at a simple example

• Matrix-matrix multiply

 Classic example in parallel computing

 Core of the “HPLinpack” benchmark*

 Simple to express: 

48

*The LINPACK Benchmarks are a measure of a system's floating point computing 
power. Introduced by Jack Dongarra, they measure how fast a computer solves a 
dense n by n system of linear equations Ax = b, which is a common task in engineering.

for (int i = 0; i < n; i++) { 
for (int j = 0; j < n; j++) { 

for (int k = 0; k < n; k++) {
c[i][j]+=a[i][k]*b[k][j]; 
} 

} 
}



Performance Estimate

• How fast should this run?

 Standard complexity analysis in numerical analysis 

counts floating point operations

 The matrix-matrix multiply algorithm has 2n3 floating 

point operations

o 3 nested loops, each with n iterations

o 1 multiply, 1 add in each inner iteration

 For n=100, there are 2x106 operations, or about 1 

msec on a 2GHz processor: 2x109 operations per sec.

 For n=1000, 2x109 operations, or about 1 sec 
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The Reality vs Theoretical Results
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• n=100: 1.1ms

• n=1000: 6s

• What this tells us:

 obvious expression of algorithms are not transformed 

into leading performance. 

• How fast should this run?

 …

 For n=100, 2x106 operations, or about 1 msec

 For n=1000, 2x109 operations, or about 1 sec 



Thinking about Performance
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• The performance model 

assumes the computer looks like 

the figure on the right

 Memory is infinitely large

 Memory is infinitely fast 

• The performance models can be 

improved by adding features to 

model the computer hardware

• In the first enhancement, lets 

make memory not infinitely fast 



A Simple Performance Model 

• Use the following:

 Number of operations (e.g. floating point multiply)

 Number of loads from memory

 Number of stores to memory

• This model ignores many features of an architecture 

that are used to optimise performance (e.g. cache)

• Consider the following code:

 2n operations (i.e. floating add, floating multiply)

 2n loads/reads (i.e. x[i] and y[i] for i=1 to n)

 n stores/writes (i.e. y[i]) 
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for (int i=1; i<n; i++ ) 
{ 

int i=1;
y[i] = a*x[i] + y[i];

}



Performance Model 
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• Assume that

c = time for operation

r = time to load/read an element

w = time to store/write an element

• Then a very crude estimate of the time for this operation is

 T = n(2c + 2r + w)

• Call this a model because it is too crude to be an estimate 



Some Comments on This Model 

• many analysis of algorithms set r and w to zero

• different ways to model communication time

 load and store to memory

 sharing of data between threads

 communication between nodes in a parallel computer

 load and store to a file system 

• more general analytical modelling

 consider sources of overhead: inter-process 

communication, idling, excess computation

54
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Performance Metrics for Parallel Systems

• Execution time

 parallel run time

 double MPI_Wtime()

• Total parallel overhead

 overhead function
 𝑇0 = 𝑝𝑇𝑝 − 𝑇s

56

𝑇𝑝 : parallel execution time

𝑇s : serial execution time 

P : the number of processors



Performance Metrics: Speedup

• Speedup (denoted by 𝑆)

 ratio of serial execution time to parallel execution time

• Example: Summing n integers with n processes

 𝑇𝑝 = Θ log(n), 𝑇𝑠 = Θ(𝑛), 𝑆 = Θ
𝒏

𝒍𝒐𝒈(𝒏)

• Can also be computed empirically with timing values

• Remember to compare to best known sequential algorithm

• Speedup can never be better than 𝑇𝑆/𝑝, unless algorithmic 

optimisations have been done.
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Performance Metrics: Speedup

• Super-linear speedup

 should be impossible, seems contradictory

• Occurs when hardware provides an extra advantage 

to parallel formulation

 e.g. cache usage or vector units
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Performance Metrics: Efficiency and Cost

• Efficiency: only a perfect system would be a speedup of 𝑝
 the fraction of time for which processing is usefully 

employed, speedup to the number of processing 

elements

• Cost quantifies the amount of resource needed to achieve 

a particular performance

• A system is cost-optimal if the parallel formulation has the 

same asymptotic growth as a function of input size as the 

fastest known sequential algorithm

• Increased granularity results in lower cost if overheads are 

reduced
59

E = 
𝑠

𝑝
= 

𝑇
𝑠

𝑝𝑇
𝑝



Performance Metrics: Amdahl’s Law

• Amdahl’s Law (1967)

 Gives the maximal theoretical speedup for a fixed 

workload

• Assumes total workload 𝑊 with serial component 𝑊s

• 𝑆(𝑠) = 
𝒘

𝒘𝒔

= 
𝟏

𝟏−𝐪+
𝐪

𝒔
, where s is the speedup of the 

parallelisable portion q of the job

• Proof:
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w𝑠 = (1−q) w + 
qw
𝑠

=>    𝑆(𝑠) = 
𝑤

𝑤
𝑠

= 
1

1−𝑞+
𝑞

𝑠



Performance Metrics: Amdahl’s Law

Example: if we can do 30% of a task four times as fast

61

𝑆(𝑠) =
1

1−0.3+
0.3

4

= 1.29

Shows that maximal speedup is always limited by 

what is not parallelised



Performance Metrics: Gustafson’s Law

Gustafson’s Law

• More optimistic and realistic than Amdahl’s Law

• Estimates speedup with respect to execution time

• 𝑆(s) = N+(1−N)(1-q)
 where N is the number of processors, q is the 

parallelisable portion of the job. 

• Based on the observation that compute resources 

scale with problem size 
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