
CITS5502 Software Processes
Personal Software Process

Unit coordinator: Arran Stewart

1 / 38

Sources

W. S. Humphrey “Using a Defined and Measured Personal
Software Process”, IEEE Software 1996
Philip M. Johnson, Anne M. Disney, “The Personal Software
Process: A Cautionary Case Study”, IEEE Software 1998

2 / 38

Personal processes

How do we become better at software development, at an
individual level?

What are the skills involved in software development?

3 / 38

Personal processes

How do we become better at software development, at an
individual level?

What are the skills involved in software development?

4 / 38

Possible skills

Specific tools/languages (e.g. Java, git)
Language paradigms (e.g. OO, functional, logical)
Good practices in

specifying
design
coding
testing, static analysis
debugging
revision management

Planning and estimating
Problem-solving skills
Working with large systems
Working with constrained systems
. . . What else?

5 / 38

Practice

“Contrary to what you might believe, merely doing your
job every day doesn’t qualify as real practice. Going to
meetings isn’t practicing your people skills, and replying
to mail isn’t practicing your typing. You have to set aside
some time once in a while and do focused practice in order
to get better at something.”1

— Steve Yegge, programmer and blogger, formerly of
Amazon and Google

1https://sites.google.com/site/steveyegge2/practicing-programming
6 / 38

Practice cont’d

Practice can still be bad or insufficient – no use practicing
things un-reflectively, or that pose no challenge to you
If you’re not failing sometimes, are you actually practicing at
the limit of your ability?

7 / 38

Typical training methods

A typical “training method” for many companies is to send
developers to a 3-day course on some technology, X – how
effective is this?
What factors might limit the effectiveness of this approach?

8 / 38

The PSP

The Personal Software Process (PSP) was created by Watts
Humphrey to apply the principles of the Capability Maturity Model
(CMM) to software development practices at the level of the
individual developer

Humphrey discovered that CMM did not work well over level 3
(particularly for small organization) without personal
improvement.

9 / 38

PSP key concepts

Bottom-up rather than top-down process improvement
i.e., improving the organization through individuals

PSP particularly designed for small teams
Establishment of personal process goals

Self measurement, analysis, adjustment of methods
PSP learnt in 7 steps – through writing 10 programs
Five framework activities

Planning, Design, Review, Development (Code & Test), PIR

10 / 38

Evidence

A number of studies attempting to measure the effectiveness of
PSP
One report2 found improved performance in size estimation and
effort estimation accuracy, product quality, process quality, and
personal productivity, without any loss of overall productivity

2Will Hayes and James W. Over, The Personal Software Process (PSP): An
Empirical Study of the Impact of PSP on Individual Engineers, Technical Report
CMU/SEI-97-TR-001, Software Eng. Inst., Pittsburgh, 1997

11 / 38

Evidence, cont’d

Anecdotal reports:3
“[W]hen I started this course, I understood what we were
supposed to do in good software engineering, but I never
really did it. Now I understand the reasons behind these
practices and the benefits of actually following a process
instead of just jumping right into coding.”

3Philip M. Johnson, Anne M. Disney, “The Personal Software Process: A
Cautionary Case Study”, IEEE Software 1998

12 / 38

General approach

Collect data to determine a developer’s initial personal process
Generate and analyse a model of actual behaviour, that is
accurate enough to support process improvement

13 / 38

PSP – A Series of Steps

Humphrey introduced the PSP concepts in a series of steps:

Personal Measurement (PSP0). Engineers
learnt how to apply the PSP forms/scripts to their personal
work
collected real data, benchmark against what they measured
recorded problems, issues, and ideas in Process Improvement
Proposal (PIP) form to use later in improving their processes

Personal Planning (PSP1). Engineers used the Proxy-based
Estimating (PROBE) method to estimate

size
development times

for new programs (based on their personal data)
They also did schedule and task planning

14 / 38

PSP – A Series of Steps

Personal Quality (PSP2). In this step, defect management is
introduced. Engineers

constructed and used checklists for design and code review
learnt why it’s important to focus on quality from the start
learnt how to efficiently review their programs

Scaling Up (PSP3). This is the final PSP step. Engineers were
expected to be able to couple multiple PSP2 processes in a
cyclic fashion to scale up to developing much larger modules

15 / 38

PSP exercises

16 / 38

PSP reports

17 / 38

PSP activities

Requires collection of data on lines of code. How many LOC are
there?

/** This program adds two input numbers and prints out

* their sum.

*/

#include <stdio.h>

int main() {

int a, b;

printf("Please enter two integers: ");

scanf("%d%d", &a, &b);

int result = a + b;

printf("The total is %d\n", result);

}

18 / 38

Halstead Complexity Measures

Halstead complexity measures are software metrics introduced
by Maurice Howard Halstead in 1977
The metrics are designed to reflect the expression of algorithms
in the program, independent of the programming language and
execution platform
In each module, count

n1 – number of distinct operators
n2 – number of distinct operands

Let N1 and N2 be the total number of operators and operands

19 / 38

Halstead Complexity Measures (cont.)

Several measures can be calculated from those numbers on the
previous slide:

Program vocabulary: n = n1 + n2

Program length: N = N1 + N2

Difficulty: D = n1
2 × N2

n2

Volume: V = N × log2 n

Effort: E = D × V

Time required to program: T = E
18 seconds

20 / 38

PSP Methods – Gathering Data

The PSP measures were defined with the Goal-QuestionMetric
(GQM) paradigm.
The data gathered in every process phase and summarized at
project completion provide the engineers a family of process
quality measures:

Size and time estimating error
Cost-performance index
Defects injected and removed per hour
Process yield
Appraisal and failure cost of quality
The appraisal to failure ratio

21 / 38

PSP Methods – Gathering Data (cont.)

Controlling cost of quality: To manage process quality, the
PSP used 3 cost-of-quality (COQ) measures:

Appraisal costs: development time spent in design and code
reviews
Failure costs: time spent in compile and test, and
Prevention costs: time spent preventing defects before they
occur (e.g., time spent on building prototypes and formal
specification)

Another COQ measure was the appraisal to failure ratio, which is
defined as Appraisal-cost / Failure-cost, denoted as A/FR.

22 / 38

PSP Methods – Estimating & Planning

The PROBE method was used
Size proxies – number of objects and functions (other proxies
are also possible)

Planning accuracy was measured by the cost-performance index
(i.e., the ratio of planned to actual development cost)
Individual estimates generally had considerable error
Overall, engineers’ estimating ability improved considerably
during the PSP course

23 / 38

PSP Methods – Managing Defects

All defects were counted, including those found in
Compiling
Testing
Code inspection

Defects were classified into 10 categories
Defects injected must be fixed earlier, as they are more
expensive to find and fix later on
Engineers also kept track of the phases when the defects were
injected and removed. The phases were: planning, design,
design review, code, code review, compile, and test

24 / 38

PSP Methods – Managing Yield

Yield is the principal PSP quality measure
Total process yield is the %defects found and fix before the
engineer started to compile ad test the program
The PSP in Humphrey’s paper focused on defect detection and
defect prevention because finding and fixing defects absorbs
most of the development time and expense
In PSP, engineers must review their code before the first
compile

Evidence shows that the more defects were found in the
compilation step, the more likely they would be present in the
testing step (correlation = 0.71)

25 / 38

Discussion

What advantages do you see in using any sort of principled
PSP?

26 / 38

Advantages

Easy for developers to only focus on urgent problems, and not
long-term improvement of skills
Can be helpful to commit to a program/plan and have
organizational support

why do we sign up for gym programs?

27 / 38

Discussion

What disadvantages do you see in using a system like the PSP?

28 / 38

Possible downsides

Inflexible?
Time-consuming?

29 / 38

Time and paperwork requirements

Developing a system using PSP 2.0 requires a developer to fill
out “12 separate paper forms, including a project plan
summary, time recording log, defect recording log, process
improvement proposal, size estimation template, time
estimation template, object categories worksheet, test report
template, task planning template, schedule planning template,
design checklist, and code checklist”.4
Which gives 500 distinct values to be calculated or recorded

4Johnson & Disney, 1998
30 / 38

Empirical evidence discussion

Based just on what we have discussed in class, do you have any
critiques of the studies examining the effectiveness of the PSP?

31 / 38

Studies from the Hawthorne electrical works

Henry A. Landsberger analyzed earlier experiments from
1924–32 at the Hawthorne Works (a Western Electric factory
outside Chicago).

The Hawthorne Works commissioned a study to see if workers
would be more productive in higher or lower levels of light.

Various changes made . . .
giving different lengths of breaks
providing food during the breaks
shortening the day, and returning it to normal

Changing a variable usually increased productivity, even if this
was just a change back to the original value.5

5But note there are criticisms of the interpretation of the Hawthorne effect,
too

32 / 38

Studies from the Hawthorne electrical works

Henry A. Landsberger analyzed earlier experiments from
1924–32 at the Hawthorne Works (a Western Electric factory
outside Chicago).

The Hawthorne Works commissioned a study to see if workers
would be more productive in higher or lower levels of light.

Various changes made . . .
giving different lengths of breaks
providing food during the breaks
shortening the day, and returning it to normal

Changing a variable usually increased productivity, even if this
was just a change back to the original value.5

5But note there are criticisms of the interpretation of the Hawthorne effect,
too

33 / 38

Factors to consider

Could effects derive just from the Hawthorne effect? (Unlikely)
The PSP lays out very specific steps and exercises – but which
ones cause the effect? Must someone use exactly this process,
exactly these forms, exactly these exercises? (Seems unlikely)

Could the same effect be got, with less paperwork?
What steps are taken to remove bias? Can you “blind”
experimenters?
Are you comparing against the best known current practices?
Are any effects due to your sample population?

34 / 38

Practicing

From Steve Yegge’s “practicing programming” blog post:6

Practice Drill #1: Write your resume. List all your relevant skills,
then note the ones that will still be needed in 100 years. Give
yourself a 1-10 rating in each skill.
Practice Drill #2: Make a list of programmers who you admire. Try
to include some you work with, since you’ll be borrowing them for
some drills. Make one or two notes about things they seem to do well
— things you wish you were better at.
Practice Drill #3: Go to Wikipedia’s entry for computer science,
scroll down to the “Prominent pioneers in computer science” section,
pick a person from the list, and read about them. Follow any links
from there that you think look interesting.

6https://sites.google.com/site/steveyegge2/practicing-programming
35 / 38

Practicing

Practice Drill #4: Read through someone else’s code for 20 minutes.
For this drill, alternate between reading great code and reading bad
code; they’re both instructive. If you’re not sure of the difference, ask
a programmer you respect to show you examples of each. Show the
code you read to someone else, and see what they think of it.
Practice Drill #5: Make a list of your 10 favorite programming tools:
the ones you feel you use the most, the ones you almost couldn’t live
without. Spend an hour reading the docs for one of the tools in your
list, chosen at random. In that hour, try learn some new feature of
the tool that you weren’t aware of, or figure out some new way to
use the tool.

36 / 38

Practicing

Practice Drill #6: Pick something you’re good at that has nothing to
do with programming. Think about how the professionals or great
masters of that discipline do their practice. What can you learn from
them that you can apply to programming?
Practice Drill #7: Get a pile of resumes and a group of reviewers
together in a room for an hour. Make sure each resume is looked at
by at least 3 reviewers, who write their initials and a score (1-3).
Discuss any resumes that had a wide discrepancy in scoring.
Practice Drill #11: Find a buddy for trading practice questions. Ask
each other programming questions, alternating weeks. Spend 10 or
15 minutes working on the problem, and 10 or 15 minutes discussing
it (finished or not.)

37 / 38

Other non-SEI PSP techniques

Reading. Many engineers and software developers rarely read
any texts on software development.

Is reading details of languages/algorithms online sufficient?
Monitoring. How do you know if you’re getting any better?
Practicing.
Attending conferences and workshops. Make sure you’re getting
something out of them. It needn’t always be what’s advertised.

38 / 38

