
CITS5502 – Testing and software quality

Unit coordinator: Arran Stewart

1 / 28



Outline

We look at processes and metrics relating to software testing and
software quality.

We won’t examine testing techniques in detail – it’s assumed you
have some familiarity with unit testing from other languages.

2 / 28



Software testing

Testing is intended to discover software system defects before it
is put into use.
When testing software, a program (or some part of it) is
executed using artifical data.
The results of the run can be checked to see whether the
software exhibits any deviations from its expected behaviour –
either a fault in its functional attributes, or a deviation from its
desired non-functional attributes.
Testing can only reveal the presence of errors, not their absence
Testing is part of the more general process of verification and
validation process, and is typically combined with static
validation techniques

3 / 28



A model of testing

4 / 28



Testing process

5 / 28



Typical stages in testing

Development testing, where the system is tested during
development to discover bugs and defects.
Release testing, where a separate testing team test a complete
version of the system before it is released to users.
User testing, where users or potential users of a system test the
system in their own environment.

6 / 28



Development testing

Development testing includes all testing activities that are carried
out by the team developing the system.

Unit testing, where individual program units or object classes
are tested. Unit testing should focus on testing the
functionality of objects or methods.
Component testing, where several individual units are
integrated to create composite components. Component
testing should focus on testing component interfaces.
System testing, where some or all of the components in a
system are integrated and the system is tested as a whole.
System testing should focus on testing component interactions.

7 / 28



Verification and validation

As used in software engineering, a definition adapted from project
management is typically used for these terms:

Validation. The assurance that a product, service, or system
meets the needs of the customer and other identified
stakeholders. It often involves acceptance and suitability with
external customers.
Verification. The evaluation of whether or not a product,
service, or system complies with a regulation, requirement,
specification, or imposed condition. It is often an internal
process.

(Source: PMBOK Guide, 6th ed)

8 / 28



Verification vs validation

Verification:

“Are we building the product right?”
The software should conform to its specification.

Validation

“Are we building the right product?”
The software should do what the user really requires.

9 / 28



Inspections and testing

Software testing investigates the dynamic behaviour of the
system – what does it do when run?

Software inspections are concerned with analysis of static
artifacts of the system (e.g. source code, binaries,
documentation, models, etc.)

Inspections may be manual, automatic, or some combination of
the two.

10 / 28



Inspecting artifacts

11 / 28



Inspections

Manual software inspections involve people examining the
source representation with the aim of discovering anomalies
and defects.
Inspections do not require execution of a system so may be
used before implementation.
They may be applied to any representation of the system
(requirements, design,configuration data, test data, etc.).
They have been shown to be an effective technique for
discovering program errors.

12 / 28



Test-driven development

In a strict waterfall model, testing is a stage performed after
implementation.
In Test-driven development (TDD), testing and code
development are interleaved.
Tests are written before code and ‘passing’ the tests is the
critical driver of development.
You develop code incrementally, along with a test for that
increment. You don’t move on to the next increment until the
code that you have developed passes its test.
TDD was introduced as part of agile methods such as Extreme
Programming. However, it can also be used in plan-driven
development processes.

13 / 28



TDD process

14 / 28



TDD process activities

Start by identifying the increment of functionality that is
required. This should normally be small and implementable in a
few lines of code.
Write a test for this functionality and implement this as an
automated test.
Run the test, along with all other tests that have been
implemented. Initially, you have not implemented the
functionality so the new test will fail.
Implement the functionality and re-run the test.
Once all tests run successfully, you move on to implementing
the next chunk of functionality.

15 / 28



Benefits of test-driven development

Code coverage
Every code segment that you write has at least one associated
test so all code written has at least one test.

Regression testing
A regression test suite is developed incrementally as a program
is developed.

Simplified debugging
When a test fails, it should be obvious where the problem lies.
The newly written code needs to be checked and modified.

System documentation
The tests themselves are a form of documentation that describe
what the code should be doing.

16 / 28



How much testing is enough?

For even small programs, exhaustive testing (i.e., testing every
possible input) is simply not possible.
Thus, testing can never demonstrate the absence of defects.
That being so, how do we know when we’ve done enough
testing?

17 / 28



How much testing is enough?

Ideally, we would like there to be no faults in our system.
In other words, we want it to have high reliability (conformance
with specification).
A common metric for reliability is mean time between failures
(MTBF) (sometimes you may see mean time to defect,
MTTD).

This is the average time the system will run without
experiencing a failure.

18 / 28



How much testing is enough?

The same problem leads to difficulties with measuring the
effectiveness of testing processes.
We would like our test efficiency (how effective our tests are –
the ratio of defect found to defects present) to be 100%.
But that would requires us to know how many defects exist but
haven’t been found – which by definition, we don’t know.

19 / 28



Estimating number of defects present

However, there a number of ways the defects in the system and its
reliability can be estimated.

We can use data from:

Industry bodies
Previous project
Extrapolating from test history of the current project, and
curve fitting
Reliability models (Poisson processes)

20 / 28



Estimating defects – assumptions

Using data from any of these sources requires us to make
assumptions.

For instance, using data from a previous project requires us to
assume that the present project is sufficiently similar for it to be a
good model.

Using historical data from the current project might require us to
assume that (for instance) all testing engineers have similar skill and
effectiveness, and/or that this doesn’t alter over time.

21 / 28



Other methods – error seeding

The idea:

Deliberately insert a certain number of bugs into a system

Ask our software engineers to test the new system

Measure what proporition are found –
e.g. if 20 bugs are inserted and 15 found, our test efficience is
75%

22 / 28



Error seeding assumptions

This too relies on assumptions – e.g. that we are able to deliberately
insert bugs of a sort that accurately reflect the bugs that turn up.

23 / 28



Other method – mutation analysis

Mutation analysis (sometimes regarded as an automated form of
error seeding) uses a similar idea.

We modify a program’s source code in small ways: e.g. we
might change a “<=” sign to “<” in a conditional statement,
or alter the value of a constant (string or number) found in the
source code
Each modified version is called a mutant.

The assumption here is that these are the sorts of errors a
programmer might make in practice.

If we can think of other typical errors, we can create mutation
operations for them.

24 / 28



Mutation analysis

We then run our tests on the mutants – we expect that our tests
should reject the mutant versions (called “killing the mutants”).

If they don’t, then something is either very wrong with our tests
(they are not detecting mutated code) or with our software (it
contains code which either is not being tested, or which seems to
have no effect on program behaviour – dead code).

25 / 28



Reliability models

We can also use models to estimate the reliability of our software.

A simple model is the Poisson distribution

26 / 28



Poisson distribution

This measures systems where in any given time interval, we
know the average time between some event occurring, but
when exactly the events do occur is random.
Example: It might be that the aveerage rate at which we
receive mail is constant, even though we don’t know in advance
when any particular message will arrive.

27 / 28



Poisson distribution – assumptions

These distributions make a number of assumptions . . .

Defects are independent
In fact, there are distinct patterns of types of defects
A problem with analysis or design can lead to a cluster of many
defects

The size of the system is constant
Whereas in fact, systems typically hrow

Each defect is fixed in the same time interval in which it was
discovered

In fact, “low priority” defects may be left until “next release”
No new defects are introduced in the fixing process

In large systems with poor regression testing frameworks, the
chance of a correct fix may be low.

28 / 28


