
CITS5501 Software Testing and Quality Assurance
Semester 1, 2020

Syntax-based testing

Command-line programs often take a range of arguments and options.

For instance, we might have a command delete_file, that takes a file to delete, and a
flag (boolean option) stating whether the removal is recursive (i.e., if the file is actually a
directory, then remove it and all contents).

Documentation will typically show the way the command can be called as follows:

� �
1 delete_file [--recursive] FILE_NAME� �
The brackets mean something is optional. A pipe (“|”) is used to separate alternatives.
Words in capital letters usually mean a string representing, e.g., a file, directory, URL,
etc.

If we are testing the program, we can write invocations of the program as following a
grammar.

Exercise 1

How can we describe the grammar for the delete_file program invocations, using the
BNF syntax we’ve seen?

Assume we have a terminal symbol file_name we don’t have to define.

1

Here are several possible solutions.

solution 1:
Define a non-terminal symbol <recursive_option>, which is either the exact string
--recursive, or the empty string.� �
1 <delete_file_invocation> ::= "delete_file" <recursive_option> <file_name>
2

3 <recursive_option> ::= "--recursive" | ""� �
solution 2

Don’t use any non-terminals besides <delete_file_invocation>; instead just define two
different “branches” in <delete_file_invocation> (i.e. two distinct productions), one
with the string --recursive, and one without.� �
1 <delete_file_invocation> ::= ("delete_file" "--recursive" <file_name>)
2 | ("delete_file" <file_name>)� �
not technically a solution

Technically, the following is not a BNF specification of a grammar:� �
1 <delete_file_grammer> :: = "delete_file" ("--recursive" | "") FILE_NAME� �
Why not? Because it uses parentheses for grouping – and our definition of what can go
in BNF specifications in the lecture notes did not include parentheses – only terminal
symbols, non-terminal symbols, and the bits of syntax ::= and |.

However, parentheses (and a few other bits of syntax, useful for things like being able to
represent repetition easily) turn out to be very convenient in practice, and form part of
what’s called Extended Backus-Naur Form (Wikipedia article here).

So to go strictly by what we said in the lectures, you should probably stick to plain BNF.

Exercise 2

(a) Could we write an exhaustive set of tests for this syntax? (b) What sort of coverage
would that give us?

(b) What is a set of tests that would give us production coverage?

2

https://en.wikipedia.org/wiki/Extended_Backus\T1\textendash Naur_form

a. Yes, we easily could. Many BNF-specified grammars (like the one for “numbers” in the
lecture slides) represent an extremely large or infinite set of strings, so can’t be tested
exhaustively.

But here – given that we make the assumption that <file_name> is a special sort of
terminal – then as far as the theory of syntax-based testing goes, yes, we can write an
exhaustive set of tests.

b. It would give us:

• Terminal Symbol Coverage (TSC), because we’ll have used all terminal symbols;
• Production Coverage (PDC), because we’ll have tried all alternative productions;

and
• Derivation Coverage (DC), because we’ll have tried all the strings the grammar

produces.

c. We aren’t told exactly what happens if delete_file is called on a directory without
the --recursive option being specified, so let’s make the following assumption:

Assumption: If delete_file is called on a directory, and the --recursive option has
not been specified, an error message will be displayed.

We should also pin down what all the inputs are to a test, when specifying it, so we’ll
also assume that the string test_file constitutes our special terminal, and that it is the
name of a directory containing two files.

• Test 1
Description: Test delete_file with the --recursive option
Test inputs:
- A directory test_file in the working directory containing two files
- The parameters “--recursive file_name” passed to the program delete_file
Expected output: file_name plus the files within it are deleted

• Test 2
Description: Test delete_file without the --recursive option
Test inputs:
- A directory test_file in the working directory containing two files
- The parameters “file_name” passed to the program delete_file
Expected output: An error message is displayed

3

Questions asked in the workshop

Q. Do we need to break down “file_name” further when answering the questions?
A. No, we’ve explicitly assumed that file_name is a special sort of terminal symbol – and
in a BNF specification, a terminal symbol can’t be broken down any further. (That’s why
it’s called “terminal”.)

Recall that whenever we make a model of a system – a state diagram, a control-flow
graph, or something else – we are necessarily simplifying (ignoring some features of the
real system). And we are allowed to decide what balance to strike between making the
model simple (but less accurate) and realistic (and thus, more complicated, and usually
more difficult to understand and test). For instance, when constructing a control-flow
graph, we might choose to ignore exceptions being thrown.

In this case: it’s useful for our purposes to make the simplifying assumption that file_name
is a terminal. But there are other assumptions we could make, and other ways we could
model the delete_file program.

Further reading

Parsing command-line options for a program is a very common task. Even when working
on a web-based project, often programmers will make use of their own custom-written
programs and scripts which need to parse command-line options.

Some sample libraries that do command-line option-parsing are:

• argparse (for Python)
• args4j (for Java)
• the OptionParser class (for Ruby)
• optparse-applicative (for Haskell)

An advantage of using these libraries is that, in addition to parsing options given by a
user on the command line, they can also generate help documentation – if the program is
called improperly, it can print out a message about correct usage:

� �
1 $ delete_file --recursive
2

3 Missing: FILE_NAME
4

5 Usage: delete_file [--recursive] FILE_NAME
6 Delete a file or directory (possibly recursively)
7

8 Available options:
9 --recursive Remove recursively

10 FILE_NAME file to delete� �

4

https://docs.python.org/3/library/argparse.html#module-argparse
http://args4j.kohsuke.org/
https://ruby-doc.org/stdlib-2.7.1/libdoc/optparse/rdoc/OptionParser.html
https://hackage.haskell.org/package/optparse-applicative

