
CITS5501 Software Testing and Quality Assurance
Semester 1, 2020

Workshop 3 (week 5) – sample solutions and
discussion

Exercise 1

a. Discuss how you would go about creating tests using Input Space Partitioning. What
steps are involved? What is the input domain? And what characteristics and partitions
would you use?

The steps are:

1. Identify testable functions
2. Identify all parameters to the functions
3. Model the input domain in terms of characteristics, each of which can be partitioned.
4. Choose particular partitions, and values from within those partitions
5. Refine into test values
6. Review

In this case, the “function” to be tested is the static method static int
binarySearch(char[] array, int startIndex, int endIndex, char value).
The function is static, so there is no “receiver object” it acts on. Since no global variables
are mentioned in the specification, the parameters are simply:

• char[] array
• int startIndex
• int endIndex
• char value

The input domain for the function consists of all possible values of these parameters.

For the parameter char[] array, we might come up with the following possible charac-
teristics and partitions:

1

null

Is it null?

not null Assumption: the array is sorted

0 1 >1 0 1 >1

What is the length of

the array?

How many times does

the element appear?

When working out what characteristics to use, it can be handy to sketch these out in a
diagram, like the one shown above.

Some things to note:

• If the array is non-null, then in our tests we will always assume that it is sorted.
Why? Because if it is not sorted, the result of the method is undefined – there is
literally nothing we can test for (not even an exception). So we must make the
assumption that it is sorted (and take care that, in our tests, we always pass sorted
arrays.)

• If the array is null, we might still have some tests involving it, based on characteristics
we’ll consider shortly. For instance: suppose startIndex > endIndex, and array
is null – what exception will be thrown? The documentation says that the method
should throw an IllegalArgumentException, so we might want to check that it
indeed does so, even when array is null.

• Some combinations of partitions are impossible – e.g., if the length of the array is
0, then the element being looked for necessarily can’t appear in it – but we don’t
worry about that at this stage.

For the startIndex parameter, one characteristic might be:

• Is startIndex < 0?

But I would probably consider startIndex and array together, and use the following
characteristic with 3 partitions:

• Is startIndex < 0, or >= array.length, or between the two?

And then we could do the same for the endIndex parameter:

• Is endIndex < 0, or >= array.length, or between the two?

Since startIndex and endIndex represent bounds of a range (and since when startIndex
> endIndex is a case mentioned by the documentation), we might consider those two
together:

2

Compared to startIndex,

is endIndex ...

<= startIndex?

== startIndex + 1?

> startIndex + 1?

Why do we pick these partitions? Because they represent the cases where the range being
searched is invalid, of size 0, and of size greater than 0, respectively. (We could also add
in a partition for the case when the range is of size 1, if we liked.)

In addition to just how many times value appears in the array, we might want to consider
how many times it appears in the cells with indexes from startIndex to endIndex-1 (in-
clusive), since that’s the portion of the array that will be searched. (This is a characteristic
involving four parameters – startIndex, endIndex, value and array.)

1 >10

How many times does the element appear

in the array, in the range

startIndex .. endIndex -1 (inclusive)?

There are more characteristics we might consider (for instance: supposing the element
being looked for is outside the bounds of startIndex and endIndex, is it to the left or
the right?), but this will do for the moment.

b. List three different tests derived using this method.

To re-cap, our characteristics were:

• For array:
– Is array null?
– If not null,

∗ Is its length: 0, 1 or >1?
• For array and value:

– How many times does value appear in array: 0, 1 or >1?
• For startIndex and array:

– Is it <0, >= array.length, or between the two?
• For endIndex and array:

– Is it <0, >= array.length, or between the two?
• For startIndex and endIndex:

– Is endIndex <(startIndex+1), ==(startIndex+1), or >(startIndex+1)?
• For startIndex, endIndex, array and value:

– How many times does the element appear in the range startIndex ..

3

endIndex-1 (inclusive): 0, 1, or >1?

(This suggests if we were to write tests for all combinations of partitions we’d end up with
4× 35 or 972 tests, which is clearly unrealistic. Some of those would be ruled out by not
being feasible – e.g. if the element doesn’t appear in the array at all, then it can’t appear
in the search range 1 time, for instance – but it’s still likely to be far more than we would
want.)

Assuming our characteristics do indeed define partitions, then every test case will involve
some combination of those partitions.

We are not asked to tackle our test selection in any particular way, though, so we can
just list three different test cases using test values from whatever partitions we like. The
worksheet also doesn’t specify any particular format with which to describe our tests, but
we know at minimum we must give inputs and expected results. And it doesn’t hurt to
give a description.

• Description: Behaviour of binarySearch when endIndex < startIndex, and
array is null.
Inputs: array = null, startIndex = 4, endIndex = 3, value = ‘a’
Expected result: need to clarify, see below.

You may have noticed the spec is contradictory in this case, since it says we should
throw an IllegalArgumentException (since endIndex < startIndex), but also
an ArrayIndexOutOfBoundsException (since both are outside the bounds of the
array). We would need to go back to the designer of binarySearch and clarify what
the intended behaviour is.

• Description: Behaviour of binarySearch when array is of size 1, the element does
not appear in it, and endIndex==(startIndex+1).
Inputs: array = {’a’}, startIndex = 0, endIndex = 1, value = ‘b’
Expected result: -2 (since the new element would be inserted at position 1, and
91− 1 = 92).

• Description: Behaviour of binarySearch when array is of size >1, the element
appears in it twice, endIndex>(startIndex+1), and the element appears in that
range once.
Inputs: array = {’a’, ’b’, ’c’, ’c’}, startIndex = 0, endIndex = 3, value =
‘c’
Expected result: 2

c. Discuss how you would assess whether a set of tests have base choice coverage. What
would you use for base choices?

To do this, we need to decide, for each characteristic, what we’re going to use as our base
choice, and we should document the reason we chose it.

The lecture slides tell us that we might specify a particular base choice because it is:

• most likely
• simplest
• smallest
• first in some order

4

We might settle on the following base choices:

• Is array null or non-null?
– We choose non-null, as being most likely, from an end-use point of view.

• Is the array of length 0, 1 or >1?
– We choose >1, again as being most likely.

• How many times does the value appear in the array: 0, 1 or >1?
– We choose >1, as being a likely case – many times, lists contain repeated

elements.
• Is startIndex<0, or >=array.length, or between the two?

– We choose “between the two”, as being most likely.
• Is endIndex<0, or >=array.length, or between the two?

– We choose “between the two”, as being most likely.
• Is endIndex <(startIndex+1), or ==(startIndex+1), or >(startIndex+1)?

– We choose >(startIndex+1), as being most likely.
• How many times does the element appear in the range startIndex .. endIndex-1

(inclusive): 0, 1, or >1?
– We choose “>1”, as being most likely.

Note that if we’re concerned this coverage criterion might not be stringent enough, and
might let some edge cases slip through the crack, we’re always at liberty to use Multiple
Base Choice. For instance, for array length, we might select 1 and >1 as being base
choices, or even all three partitions.

If we use Base Choice as a coverage criterion, then it will be satisfied if we have:

• A test in which the base choice is selected, for all characteristics
• For each characteristic c: a test in which all other characteristics are held constant,

and c, the characteristic we’re looking at, is varied.

A quick count suggests the number of tests will be 1 (the base choice for all) plus

• 1 (for null array)
• 2 (array of length 0 and array of length 1)
• 2 (values appears 0 times and 1 time)
• 2 (startIndex < 0 and startIndex >= array.length)
• 2 (endIndex < 0 and endIndex >= array.length)
• 2 (endIndex <(startIndex+1) and ==(startIndex+1))
• 2 (element appears in the searched range 0 times, and 1 time)

for a total of 14 tests – much more tractable than 972 tests. (Again, some combinations
can be removed because they’re not feasible – but the number of tests will certainly be no
more than 14.)

5

Exercise 2

� �
1 public static int binarySearch(char[] array, int startIndex, int endIndex,

↪→ char value) {
2 if (startIndex > endIndex) {
3 throw new IllegalArgumentException();
4 }
5 if (startIndex < 0 || endIndex > array.length) {
6 throw new ArrayIndexOutOfBoundsException();
7 }
8

9 int lo = startIndex;
10 int hi = endIndex - 1;
11 while (lo <= hi) {
12 int mid = (lo + hi) / 2;
13 char midVal = array[mid];
14 if (midVal < value) {
15 lo = mid + 1;
16 } else if (midVal > value) {
17 hi = mid - 1;
18 } else {
19 return mid; // value found
20 }
21 }
22 return lo * -1; // value not present
23 }� �
a. Discuss how you would construct a control-flow graph for the method. Try drawing
the graph, stating any simplifying assumptions you need to make.

We would construct the control-flow graph by converting each basic control-flow structure
(if, while and so on) into a graph as shown in the lecture slides.

To simplify the graph – given that when an exception is thrown, we don’t know where
execution will resume – we will assume that it goes to a fictional location, which we’ll call
“ExHandler”.

We should end up with a diagram like the one following:

6

A

X

ExHandler

startIndex > endIndex

B

5
truefalse

true

C
9-10

D

22

lo <= hi

E
12-13

F
14

midVal < value

G

15

H

16

midVal > value

I

17

false

J

19

false

K
11

true

false

true false

true

startIndex < 0 ||

endIndex > array.length

2

Figure 1: Control-flow graph for binarySearch

b. See if you can identify prime paths in which the loop is executed:

• zero times
• once
• more than once

For reference, the prime paths are:
AX DEFHID GDEFG
ABX EFGDE GDEFHI
ABCDK EFGDK GDEFHJ
ABCDEFG EFHIDE HIDEFG
ABCDEFHI EFHIDK HIDEFH
ABCDEFHJ FGDEF IDEFHI
DEFGD FHIDEF IDEFHJ

Zero times: the paths AX, ABX and ABCDK are all prime paths, and all execute the
loop body exactly zero times.

One time: the paths ABCDEFHJ, EFGDK and EFHIDK are all prime paths, and all
traverse the loop body only once, so they meet our criterion.

More than once: paths which definitely execute the loop body more than once are:

7

EFGDE GDEFHJ
EFHIDE HIDEFG
FGDEF HIDEFH
FHIDEF IDEFHI
GDEFG IDEFHJ
GDEFHI

For the remaining prime paths: it’s not clear whether we can say which of these categories
they fall into. (The paths are ABCDEFG, ABCDEFHI, DEFGD, and DEFHID.) They
traverse the nodes making up the loop body once, but if we actually executed the code
so as to traverse these paths, we might end up executing the loop body another time –
it would depend on the value of lo <= hi once the program got to node D for a second
time.

c. See if you can construct test cases for these prime paths.

Let’s suppose we selected the following prime paths for part (b):

• AX (zero times)
• EFGDK (once)
• EFGDE (more than once)

For a test case which traverses the path AX, we just need startIndex > endIndex.

So a possible test case might be:

• Description: Test case to execute path AX in Figure 1
Inputs: array = {’a’, ’b’}, startIndex = 1, endIndex = 0, value = ‘b’
Expected result: Throws IllegalArgumentException

For a test case which traverses the path EFGDK, we need to come up with inputs such
that lo <= hi is true the first time round, but will become false after. If you experiment
with the code, you will see that this happens when hi = lo + 1, and the searched-for
value is not found.

So a test case for this path could be:

• Description: Test case to execute path EFGDK in Figure 1
Inputs: array = {’a’}, startIndex = 0, endIndex = 1, value = ‘b’
Expected result: Returns -1 (since considering the “slice” of the array from
position 0 to position 0 inclusive: if the value “b” is not found there, then the place
to insert it is at position 0, and (91× 0)− 1 = 91.)

(Try executing the code “by hand”. Before entering the loop, you should get that lo and
hi both equal 0.
Then mid = (0 + 0) / 2 (which is 0), midVal = 'a', and the the new values of lo and
hi are 1 and 0, respectively.)

For a test case which traverses the path EFGDE, we need to come up with inputs that
get us to node E (so lo <= hi needs to be true) and then goes through the loop again
(so lo <= hi the second time). If you experiment with the code, you will see that we can
make this happen when hi = lo + 2, and the searched-for value is not found the first
time through the loop.

So here is a possible test case:

8

• Description: Test case to execute path EFGDE in Figure 1
Inputs: array = {’a’, ’b’}, startIndex = 0, endIndex = 2, value = ‘c’
Expected result: Returns -3 (since considering the “slice” of the array from
position 0 to position 1 inclusive: if the value “c” is not found there, then the place
to insert it would be at position 2, and (91× 2)− 1 = 93.)

Some further notes on the binarySearch method:

• If you try executing the above tests on the implementation that has been given,
you’ll see that it doesn’t give correct results. Can you work out what the fault is?

• Binary search is notoriously difficult to code correctly, despite the fact that a basic
implementation (without exception throwing) takes only a dozen lines or so.

In 1986, Jon Bentley in his book Programming Pearls wrote that (based on his
experience teaching courses to professional programmers) 90% of programmers
implement binary search incorrectly, even when given several hours to do it, and
he presents a version which he then uses program verification techniques to “prove”
correct.

But in fact, there is a subtle bug in the code Bentley presents. Google software
engineer Joshua Bloch, who wrote the Java implementation of binary search, and
used Bentley’s code as a basis for it, wrote about the bug’s 2006 discovery (see his
blog post, at googleblog.com): the bug had gone unnoticed for 20 years.

In our code listing, the bug appears in line 12 (the line with the statement int mid
= (lo + hi) / 2). The binarySearch method will return an incorrect result when
lo + hi is greater than 231 (more details are given by blogger Mohit Chawla here).
As Bloch says in his blog post, “This bug can manifest itself for arrays whose length
(in elements) is 230 or greater (roughly a billion elements). This was inconceivable
back in the ’80s, when Programming Pearls was written, but it is common these
days at Google and other places.”

So although I have said that most of us need not often be concerned with the upper
and lower boundaries of data types like int, it is certainly not always the case that
they can be ignored.

9

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://thebittheories.com/the-curious-case-of-binary-search-the-famous-bug-that-remained-undetected-for-20-years-973e89fc212

	Exercise 1
	Exercise 2

