
CITS5501 Software Testing and Quality Assurance
Semester 1, 2020

Workshop 8 – Formal specifications

1 Requirements

Identify some problems with the following requirements:

a. “The system shall not accept passwords longer than 15 characters.”
b. “The software shall support a water level sensor.”

2 Alloy sigs and properties

How would you translate the following into Alloy syntax? All of these can be done by
declaring sigs and properties.

a. There exist such things as chessboards.
b. There is one, and only one, tortoise in the world.
c. There exists at least one policeman.
d. Files have exactly one parent directory.
e. Directories have at most one parent directory.
f. Configuration files have at least one section.

3 Alloy facts

Recall that in Alloy, facts are additional constraints about the world, that aren’t expressed
in the sigs, and can be used to “tighten” the meaning of your model. (Some constraints
could be expressed either in the sig, or as a fact.) For instance, using the example File
and Dir and FSObject sigs from the lecture:

� �
1 fact {
2 File + Dir = FSObject
3 }� �
means, “the set of files, plus the set of directories, is the same as the set of all file-system
objects”.

1

Or, if we give our fact a name:

� �
1 fact noOtherFSObjects {
2 File + Dir = FSObject
3 }� �
Take a look at the Alloy quick reference, which gives other operators you can use besides
“+” and “=”. For instance, “-” (set subtraction), “#” (set cardinality, or “size”), “&” (set
intersection), “in” (set membership), typical comparison operators (“<”, “>”, “=<”, “=>”),
and typical logical operators (“&&”, “||”, “!”), and see if you can give Alloy facts which
express the following.

a. Assume we have a sig LectureTheatre{} and a sig Venue{}.
Give a fact which constrains every lecture theatre to also be a venue. (Note that we
could do this using “extends” in the sig, also. But sometimes it’s more convenient
to express things using facts, or the constraint we want is too complicated for just
“extends”.)

b. Assume we have the sigs Carnivore{}, Omnivore{}, Herbivore{}. Write a fact
constraining Omnivore to be the intersection of Carnivore and Herbivore.

Sample solutions:

� �
1 // a.
2

3 // All lecture theaters are venues
4 fact { LectureTheatre in Venue }
5

6 // However note that you will get a warning in Alloy if you
7 // try this: by default, each sig is a distinct type.
8 // For a fully working example:
9

10 sig Venue {}
11 sig Lecture in Venue {}
12

13 pred show() {}
14

15 run show for 3� �

2

� �
1 // b.
2

3 // Assume 'Herbivore' and 'Carnivore' mean 'does eat plants'
4 // and 'does eat meat' respectively.
5

6 // Omivore is the intersection of Herbivore and Carnivore:
7 fact { Omivore = Herbivore & Carnivore }
8

9 // Again, to avoid warnings and model this fully,
10 // we'll need to amend the sigs. Full working example:
11

12 sig Animal {}
13 sig Herbivore in Animal {}
14 sig Carnivore in Animal {}
15

16 fact { Omivore = Herbivore & Carnivore }
17

18 pred show() {}
19

20 run show for 3� �

4 Facts with quantifiers

The facts in the previous section constrain sets (e.g. the set of lecture theatres, or the set
of omnivores).

We can also write constraints that apply to every entity in some set.

For example, suppose we have the following sigs:

� �
1 sig Activity {}
2 sig Person { hobbies: set Activity }
3 sig ComputerScientist extends Person {}� �
We can apply the following constraint: “Computer scientists have no hobbies:”

� �
1 fact {
2 all cs : ComputerScientist | #cs.hobbies = 0
3 }� �
In other words: people can have zero or more hobbies; but for all people who are computer
scientists, if we look at their hobbies, the cardinality will be 0.

3

It’s also possible to write this using “no” (another sort of “multiplicty”, like lone or set):

� �
1 fact {
2 all cs : ComputerScientist | no cs.hobbies
3 }� �
Try extending this model to say:

a. Economists are also people.
b. Economists have at most one hobby.
c. Students are people.
d. Students have at least one hobby.
e. Bots are not people.

4

Sample solutions:

a. Economists are also people:

� �
1 // if we assume Economist never overlaps with ComputerScientist
2 sig Economist extends Person {}� �

b. Economists have at most one hobby.

� �
1 fact {
2 all econ : Economist | lone econ.hobbies
3 }� �

c. Students are people.

� �
1 sig Student extends Person {}
2 // Alternative to this: plausibly, we might instead model
3 // students as a subset of Person, so you can
4 // be a student economist.� �

d. Students have at least one hobby.

� �
1 fact {
2 all s : Student | some s.hobbies
3 }� �

e. Bots are not people.

� �
1 // We can just declare bots as a separate sig --
2 // by default, they won't overlap with Person
3 sig Bot {}� �

Further exercises

Model the following systems:

5

1. An alarm clock has two sorts of time it can keep track of: the current time, and an
alarm time.

It always has a current time, and may have an alarm time.

2. A person can have up to two parents (who are also people). No person is their own
parent. There exists exactly one person – let’s call them Bob – who has no parents.
(Poor Bob.)

3. Entities called nodes exist (we will use them to model linked lists). A node may
have a successor node, called its “next” node.

4. A contact list may contains multiple entries. Each entry must have a “personName”,
and may have one or more telephone, street address, or emails.

6

	Requirements
	Alloy sigs and properties
	Alloy facts
	Facts with quantifiers
	Further exercises

