
CITS5501 2020 project

xx

Version: 0.2
Date: 5 May 2020
Please check the CITS5501 website to ensure that you have the latest version.

The goal of this assignment is to assess your understanding of class and unit testing,
syntax-based testing, and Alloy modelling.

• The assignment contributes 35% towards your final mark this semester, and is to
be completed as individual work. It is marked out of 35.

• The deadline for this assignment is 23:59 pm, Sunday 31st May.
• The assignment is to be done individually.
• Submit your assignment as either one zipped file, or multiple individual files, using

cssubmit. Please do not use other archive file formats (e.g. 7z, .dmg, .rar, .sqx).
• Your submission should contain a PDF report containing answers to questions 1–2,

plus an Alloy “.als” file with your answer to question 3.
• You are expected to have read and understood the University Guidelines on Academic

Conduct. In accordance with this policy, you may discuss with other students the
general principles required to understand this project, but the work you submit
must be the result of your own effort.

• You must submit your project before the submission deadline above. There are
significant Penalties for Late Submission (click the link for details).

You are part of the software development team for Exron, a power generation company.
Specifically, you work in the trade division, which trades in the energy resources
market (electricity, gas, and carbon emissions).

The company trades in these commodities just as investors might trade in shares
or futures – for example, a power producer (company A) could agree on a contract
with another company (company B) to provide 500 Megawatts-hours for a given price
in 10 months’ time; and company B can sell its rights under the contract on the
commodities market. Your company can buy and sell contracts in order to ensure it
has enough supply for customers, or to make profit from excess supply.

Your team has been tasked with developing a new interface to the company’s existing
trading systems, which will allow traders to specify transactions to make using a
specially-designed programming language (that is, a domain-specific language).

1

https://secure.csse.uwa.edu.au/run/cssubmit
http://www.governance.uwa.edu.au/procedures/policies/policies-and-procedures?policy=UP07%2F21
http://www.governance.uwa.edu.au/procedures/policies/policies-and-procedures?policy=UP07%2F21
https://ipoint.uwa.edu.au/app/answers/detail/a_id/2711/~/consequences-for-late-assignment-submission
https://en.wikipedia.org/wiki/Domain-specific_language

1. Classes and unit tests

Consider the following partially-specified classes:

• Interface TradingOrganization.

Has getter and setter methods for:

– organizationID, a String
– registeredAddress, a String
– name, a String
– emailAddress, a String

• Interface Formula.

Has a method:
double calculateResult()

• class Contract

Has instance variables:

– Date deliveryStartDate
– Date deliveryEndDate

• class DieselContract

- Inherits from Contract.

Has instance variables:

– ContractStorageDatabase db
– double gallonsPerDay
– TradingOrganization otherContractParty
– Formula priceCalculationFormula

Has a method:
void finalizeContract().

When finalizeContract is executed on a properly initialized DieselContract object,
the details of the contract are stored in a persistent database (the db) instance variable,
and electronic authorization of the contract is performed over the network using the
otherContractParty’s email address.

Answer the following questions. If you need to make any assumptions, state what they
are.

a. Identify two plausible class invariants, each of which applies to one of these classes.
(If both your invariants apply to the same class, that is fine.)

Explain what the invariants are. What implications would it have for the behaviour
of the system if the invariants were broken?

(1
4 to 1

3 page) [5 marks]

b. If writing a JUnit unit test for the finalizeContract method, what test fixtures
might be required? Give at least two examples.

2

Sketch out code for a test class plus fixtures using a language and testing framework
of your choice (Java or Python; if using another language, check with the unit
coordinator first).

You do not need to write the actual tests; just class instance variables and any
fixture-related code.

(Up to a page) [5 marks]

c. For the fixtures you described in question 1(b): if you were writing an integration
test, would your approach be any different? Explain how and why.

(1
4 to 1

3 page) [5 marks]

d. If you were designing tests for the finalizeContract() method using input space
partitioning, what would the parameters be? Identify at least two characteristics you
could use for performing input space partitioning. Explain why they are appropriate,
and how you would use them in writing unit tests.

(1
2 to 1 page) [5 marks]

2. Contracts specification language

Pricing formulas for contracts can be specified by traders using a dedicated language. A
fragment of the BNF syntax for the language is:

� �
1 <quantityVar> ::= "diesel" <grade> | "windpower" <grade>
2 | "coalpower <grade>"
3 <operator> ::= "+" | "*" | "-" | "/"
4 <builtinfunc> ::= "min(" <quantityVar> "," <dateRange> ")"
5 | "max(" <quantityVar> "," <dateRange> ")"
6 | "avg(" <quantityVar> "," <dateRange> ")"
7 <expression> ::= <builtinfunc> <operator> <builtinfunc> |
8 <builtinfunc> <operator> "(" <expression> ")"� �
We assume that <grade> and <dateRange> are specified elsewhere, and here we will
assume they are terminal symbols. (Or, if you like, you can assume they have only one
possible production.)

a. Write down two sample strings from the language defined by this grammar. Given
our assumptions, explain whether it is plausible to write exhaustive tests for the
language.

(1
3 to 1

2 page) [5 marks]

b. If you wanted to achieve Terminal Symbol Coverage (TSC), how many tests would
be needed? What about for Production Coverage (PDC)? Show any working and
explain your reasoning.

(1
2 to 1 page) [5 marks]

3

3. Formal methods

Write code for signatures and facts in Alloy which will do the following:

• Declare the existence of a “diesel contract” type.
• Declare the existence of a “formula” and “trading organization” types.
• Declare appropriate relationships and cardinalities for the above types.

Submit your work as an Alloy (“.als”) file. [5 marks] Include explanatory comments in
your model code.

Report requirements

Your report should be in PDF format, and use A4 size pages. The font for body text
should be between 9 and 12 points. It should contain numbered headings, with useful
heading titles. Any diagrams, charts or tables used must be legible and large enough
to read. All pages (except the cover, if you have one) should be numbered. If you give
scholarly references, you may use any standard citation style you wish, as long as it is
consistent. Cover sheets, diagrams, charts, tables, bibliographies and reference lists do
not count towards any page-count maximums.

4

	1. Classes and unit tests
	2. Contracts specification language
	3. Formal methods

	Report requirements

