
CITS5501 2020 project

xx

Version: 0.2
Date: 5 May 2020
Please check the CITS5501 website to ensure that you have the latest version.

The goal of this assignment is to assess your understanding of class and unit testing,
syntax-based testing, and Alloy modelling.

• The assignment contributes 35% towards your final mark this semester, and is to
be completed as individual work. It is marked out of 35.

• The deadline for this assignment is 23:59 pm, Sunday 31st May.
• The assignment is to be done individually.
• Submit your assignment as either one zipped file, or multiple individual files, using

cssubmit. Please do not use other archive file formats (e.g. 7z, .dmg, .rar, .sqx).
• Your submission should contain a PDF report containing answers to questions 1–2,

plus an Alloy “.als” file with your answer to question 3.
• You are expected to have read and understood the University Guidelines on Academic

Conduct. In accordance with this policy, you may discuss with other students the
general principles required to understand this project, but the work you submit
must be the result of your own effort.

• You must submit your project before the submission deadline above. There are
significant Penalties for Late Submission (click the link for details).

You are part of the software development team for Exron, a power generation company.
Specifically, you work in the trade division, which trades in the energy resources
market (electricity, gas, and carbon emissions).

The company trades in these commodities just as investors might trade in shares
or futures – for example, a power producer (company A) could agree on a contract
with another company (company B) to provide 500 Megawatts-hours for a given price
in 10 months’ time; and company B can sell its rights under the contract on the
commodities market. Your company can buy and sell contracts in order to ensure it
has enough supply for customers, or to make profit from excess supply.

Your team has been tasked with developing a new interface to the company’s existing
trading systems, which will allow traders to specify transactions to make using a
specially-designed programming language (that is, a domain-specific language).

1

https://secure.csse.uwa.edu.au/run/cssubmit
http://www.governance.uwa.edu.au/procedures/policies/policies-and-procedures?policy=UP07%2F21
http://www.governance.uwa.edu.au/procedures/policies/policies-and-procedures?policy=UP07%2F21
https://ipoint.uwa.edu.au/app/answers/detail/a_id/2711/~/consequences-for-late-assignment-submission
https://en.wikipedia.org/wiki/Domain-specific_language

1. Classes and unit tests

Consider the following partially-specified classes:

• Interface TradingOrganization.

Has getter and setter methods for:

– organizationID, a String
– registeredAddress, a String
– name, a String
– emailAddress, a String

• Interface Formula.

Has a method:
double calculateResult()

• class Contract

Has instance variables:

– Date deliveryStartDate
– Date deliveryEndDate

• class DieselContract

- Inherits from Contract.

Has instance variables:

– ContractStorageDatabase db
– double gallonsPerDay
– TradingOrganization otherContractParty
– Formula priceCalculationFormula

Has a method:
void finalizeContract().

When finalizeContract is executed on a properly initialized DieselContract object,
the details of the contract are stored in a persistent database (the db) instance variable,
and electronic authorization of the contract is performed over the network using the
otherContractParty’s email address.

Answer the following questions. If you need to make any assumptions, state what they
are.

a. Identify two plausible class invariants, each of which applies to one of these classes.
(If both your invariants apply to the same class, that is fine.)

Explain what the invariants are. What implications would it have for the behaviour
of the system if the invariants were broken?

(1
4 to 1

3 page) [5 marks]

2

solution:
Plausible invariants are:

• That instance variables (deliveryStartDate, deliveryEndDate, db,
otherContractParty, priceCalculationFormula) should not be null, for
their respective classes.
(This is usually assumed to be the case for Java code, but does qualify as an
acceptable invariant.)

• Assuming classes are implemented that have instance variables for
organizationID, registeredAddress, name, and emailAddress (for the
TradingOrganization interface), that these should not be null.

• That the organizationID of an object implementing TradingOrganization
must be distinct from all other organization IDs.

• That deliveryStartDate must be no later than deliveryEndDate, for
Contract.

• gallonsPerDay must not be 0 (for DieselContract)
• Depending on the assumptions made: That gallonsPerDay must not be

negative. (Alternatively: this could represent a contract to receive, rather than
to supply.)

• email addresses must be valid addresses, complying with relevant specifications

If class invariants are broken, that means an object is now in an erroneous or inconsistent
state – it is semantically “meaningless”. For objects to operate correctly requires that
they be in a consistent state, so we can now no longer rely on the correct operation of
those objects (and nor, consequently, on behaviour of the system).

b. If writing a JUnit unit test for the finalizeContract method, what test fixtures
might be required? Give at least two examples.

Sketch out code for a test class plus fixtures using a language and testing framework
of your choice (Java or Python; if using another language, check with the unit
coordinator first).

You do not need to write the actual tests; just class instance variables and any
fixture-related code.

(Up to a page) [5 marks]

solution: fixtures:
Test fixtures include any state that must be set up for the test. Since this is a unit test,
the fixtures will typically be instance variables of the test class, and may be mocks, but
certainly shouldn’t be e.g. connections to live databases – those are too slow for unit tests.

So, examples of plausible test fixtures are (depending on exactly what the test is, and
how it is written):

• values for deliveryStateDate and deliveryEndDate
• a mock value for db
• a value for otherContractParty (including all necessary state for that value);

could be a mock
• a value for priceCalculationFormula; probably a mock

3

solution: test class
A typical test class might look something like this:

� �
1 class DieselContractTest {
2

3 // assume we have fixtures for db, otherContractParty,
4 // and priceCalculationFormula
5 ContractStorageDatabase testDB;
6 TradingOrganization testParty;
7 Formula testFormula;
8

9 // setUp method assuming the Mockito framework is
10 // used - pseudocode is fine
11 @Before
12 public void setUp(){
13 testDB = mock(ContractStorageDatabase.class);
14 testParty = mock(TradingOrganization.class);
15 testFormula = mock(Formula.class);
16

17 // code to specify behaviour of mocks goes here
18 }
19

20 @After
21 public void tearDown(){
22 // good practice to set fixtures to null
23 testDB = null;
24 testParty = null;
25 testFormula = null;
26 }
27

28 // actual tests would go here
29 }� �

c. For the fixtures you described in question 1(b): if you were writing an integration
test, would your approach be any different? Explain how and why.

(1
4 to 1

3 page) [5 marks]

4

solution:
If writing an integration test, we aim to test that multiple classes work correctly together.

So for each integration test, some of the objects that would have been mocks in a unit
test, will be replaced by real objects of that class.

Some of our tests might test that our Java code works correctly with the database. For
such tests, we would use a real database (though one containing fake data - i.e. not a
“live”, production database).

Likewise, at some point we will went to test integration with the email system, so rather
than a “mock” object representing a mail server, we would actually connect to a mail
server (albeit one that doesn’t send actual emails to external addresses).
[See e.g. https://mailtrap.io/ for an example of a company providing such a service.]

d. If you were designing tests for the finalizeContract() method using input space
partitioning, what would the parameters be? Identify at least two characteristics you
could use for performing input space partitioning. Explain why they are appropriate,
and how you would use them in writing unit tests.

(1
2 to 1 page) [5 marks]

5

https://mailtrap.io/

solution:
The parameters consist of all state and values that must be supplied in order to make a
call to finalizeContract.

Thus, this includes the values for the deliveryStartDate, deliveryEndDate, db,
gallonsPerDay, otherContractParty and priceCalculationFormula instance
variables. (Assuming these are the only non-local variables used by the method.)

Many characteristics are possible, but some plausible characteristics include:

• Difference between deliveryStartDate and deliveryEndDate (0 days, 1 day,
more than 1 day).

Because errors often happen around “boundaries”:

• deliveryStartDate is the first day of a week
• deliveryStartDate is the first day of a month
• deliveryStartDate is the first day of a year

(And similarly for deliveryEndDate, and for the last day of a week, month or year.)

Assuming negative gallonsPerDay is acceptable (see previous answers):

• sign of gallonsPerDay, positive or negative

Note that the above characteristics partition up the valid values of each parameter - the
normal case.

How we treat invalid values depends on the assumptions made.

If there are preconditions that state the result is undefined for invalid values - then we
don’t write tests for them (because no behaviour is specified, so no test can be written).

If on the other hand there are preconditions stating that an exception will be thrown,
then we should write tests for that, to ensure the correct exceptions are thrown.

In general, we don’t bother to write tests for null values, since in Java systems we normally
assume that null is not a valid value, and that the Java runtime itself will throw a
NullPointerException. (If we wrote a test for that, we’d be testing the Java runtime -
not our code - and there’s usually little point in doing so.)

To use our characteristics in tests: the input values for each test would consist of
some combination of partitions from our various characteristics (excluding infeasible
combinations).

2. Contracts specification language

Pricing formulas for contracts can be specified by traders using a dedicated language. A
fragment of the BNF syntax for the language is:

� �
1 <quantityVar> ::= "diesel" <grade> | "windpower" <grade>
2 | "coalpower <grade>"
3 <operator> ::= "+" | "*" | "-" | "/"

6

4 <builtinfunc> ::= "min(" <quantityVar> "," <dateRange> ")"
5 | "max(" <quantityVar> "," <dateRange> ")"
6 | "avg(" <quantityVar> "," <dateRange> ")"
7 <expression> ::= <builtinfunc> <operator> <builtinfunc> |
8 <builtinfunc> <operator> "(" <expression> ")"� �
We assume that <grade> and <dateRange> are specified elsewhere, and here we will
assume they are terminal symbols. (Or, if you like, you can assume they have only one
possible production.)

a. Write down two sample strings from the language defined by this grammar. Given
our assumptions, explain whether it is plausible to write exhaustive tests for the
language.

(1
3 to 1

2 page) [5 marks]

solution:
Many are possible, but here are two:

� �
1 min(diesel <grade>, <dateRange>) + min(diesel <grade>, <dateRange

↪→ >)
2

3 min(diesel <grade>, <dateRange>) + max(diesel <grade>, <dateRange
↪→ >)� �

Here we’ve just left <grade> and <dateRange> in the final string, but we could replace
them with any string we like – we are assuming they have just one production, so:

� �
1 min(diesel A, 01/01/2020-02/01/2020) + min(diesel A,

↪→ 01/01/2020-02/01/2020)
2

3 min(diesel A, 01/01/2020-02/01/2020) + max(diesel A,
↪→ 01/01/2020-02/01/2020)� �

It is not possible to write exhaustive tests for this grammar, because an <expression>
can grow without limit: the second production of <expression> means that given any
expression, we can always construct a “larger” one. So this is an infinite-sized language
and cannot be tested exhaustively.

b. If you wanted to achieve Terminal Symbol Coverage (TSC), how many tests would
be needed? What about for Production Coverage (PDC)? Show any working and
explain your reasoning.

(1
2 to 1 page) [5 marks]

7

solution:
The number of terminals is:

• for <quantityVar>: 3 “normal” terminals, plus <grade> (deemed to be a
terminal) gives 4 total.

• for <operator>: 4
• for <builtinfunc> and <expression>: 5 “normal” terminals (assuming dupli-

cate terminals count as just one “token”), plus <dateRange> (deemed to be a
terminal) gives 6 total.

So, 14.

The number of productions is:

• for <quantityVar>: 3
• for <operator>: 4
• for <builtinfunc>: 3
• for <expression>: 2

So, 12.

3. Formal methods

Write code for signatures and facts in Alloy which will do the following:

• Declare the existence of a “diesel contract” type.
• Declare the existence of a “formula” and “trading organization” types.
• Declare appropriate relationships and cardinalities for the above types.

Submit your work as an Alloy (“.als”) file. [5 marks] Include explanatory comments in
your model code.

8

solution:
Depending on the assumptions, there are many possibilities, but the minimal code for
declaring these entities would be:

� �
1 sig DieselContract {
2 formula : one Formula,
3 otherContractParty: one TradingOrganization
4 }
5 sig Formula {}
6 sig TradingOrganization {}� �
What other attributes we add depends on our assumptions about what we’re trying to
model. Since dates turn up in our tests quite a bit, we might want to model those. So we
might add a sig Date, and amend DieselContract:

� �
1 sig Date {}
2

3 sig DieselContract {
4 formula : one Formula,
5 otherContractParty: one TradingOrganization
6 deliveryStartDate: Date
7 deliveryEndDate: Date
8 }� �
Or we might model dates as ints. (Though if you do a little research, you will discover
that a better solution is to model dates as an ordered type: open util/ordering[Date].

If we do that, we can then add constraints such as:

� �
1 fact endAfterStart {
2 all c : DieselContract | c.deliveryEndDate >= c.deliveryStartDate
3 }� �

Report requirements

Your report should be in PDF format, and use A4 size pages. The font for body text
should be between 9 and 12 points. It should contain numbered headings, with useful
heading titles. Any diagrams, charts or tables used must be legible and large enough
to read. All pages (except the cover, if you have one) should be numbered. If you give
scholarly references, you may use any standard citation style you wish, as long as it is
consistent. Cover sheets, diagrams, charts, tables, bibliographies and reference lists do
not count towards any page-count maximums.

9

	1. Classes and unit tests
	2. Contracts specification language
	3. Formal methods

	Report requirements

