
CITS5501 Software Testing and Quality
Assurance

System, integration and regression testing

Unit coordinator: Arran Stewart

1 / 22



Overview

Testing strategy
Integration testing
Regression testing
“Smoke” testing
Web testing

2 / 22



Testing strategy

Types of testing:
System engineering

Analysis modeling

Design modeling

Code generation Unit test

Integration test

Validation test

System test

3 / 22



Testing strategy

Typically, we begin by ‘testing-in-the-small’ and move toward
‘testing-in-the-large’

Start with units (functions/classes)
Then start integrating them

4 / 22



Testing strategy

While doing unit testing, we will typically make use of
“mocks”/doubles in place of other units or modules
In integration testing, we can test how units or modules work
together

5 / 22



Integration testing

The entire system is viewed as a collection of subsystems (sets
of classes) determined during the system and object design.
The order in which the subsystems are selected for testing and
integration determines the testing strategy

6 / 22



Integration testing strategies

Main options:

Big bang integration (nonincremental)
Bottom up integration
Top down integration
Sandwich testing
Variations of the above

7 / 22



Top Down Integration

top module is tested with 
stubs

stubs are replaced one at 
a time, "depth first"

as new modules are integrated, 
some subset of tests is re-run

A

B

C

D E

F G

8 / 22



Bottom-Up Integration

drivers are replaced one at a 
time, "depth first"

worker modules are grouped into 
builds and integrated

A

B

C

D E

F G

cluster
9 / 22



Sandwich Testing

Top modules are
tested with stubs

Worker modules are grouped into 
builds and integrated

A

B

C

D E

F G

cluster
10 / 22



Pros and cons of bottom up integration testing

Pro: Systems tested as they are ready
Con: Typically tests one important subsystem (UI) last

11 / 22



Pros and cons of top-down integration testing
Pro:

Test cases can be defined in terms of the functionality of the
system (functional requirements)

Cons:

Writing stubs can be difficult: Stubs must allow all possible
conditions to be tested.
Possibly a very large number of stubs may be required,
especially if the lowest level of the system contains many
methods.
One solution to avoid too many stubs: Modified top-down
testing strategy

Test each layer of the system decomposition individually before
merging the layers
Disadvantage of modified top-down testing: Both stubs and
drivers are needed 12 / 22



Steps in integration testing

1 Based on the integration strategy, select a component to be
tested. Unit test all the classes in the component.

2 Put selected component together; do any preliminary fix-up
necessary to make the integration test operational (drivers,
stubs)

3 Do functional testing: Define test cases that exercise all uses
cases with the selected component

4 Do structural testing: Define test cases that exercise the
selected component

5 Execute performance tests
6 Keep records of the test cases and testing activities.
7 Repeat steps 1 to 7 until the full system is tested.

The primary goal of integration testing is to identify errors in
the (current) component configuration.

13 / 22



Which integration strategy should you use?

Factors to consider
Amount of test harness (stubs &drivers)
Location of critical parts in the system
Availability of hardware
Availability of components
Scheduling concerns

14 / 22



Which integration strategy should you use?, cont’d

Bottom up approach
good for object oriented design methodologies
Test driver interfaces must match component interfaces
Top-level components are usually important and cannot be
neglected up to the end of testing
Detection of design errors postponed until end of testing

15 / 22



Which integration strategy should you use?, cont’d

Top down approach
Test cases can be defined in terms of functions examined
Need to maintain correctness of test stubs
Writing stubs can be difficult

16 / 22



Regression testing

Mentioned in previous lectures:
Regression testing is the re-execution of some subset of tests
that have already been conducted, to ensure that changes have
not propagated unintended side effects

Whenever software is corrected, some aspect of the software
configuration (the program, its documentation, or the data
that support it) is changed.
Regression testing helps to ensure that changes (due to testing
or for other reasons) do not introduce unintended behavior or
additional errors.
Regression testing may be conducted manually, by re-executing
a subset of all test cases or using automated tools.

17 / 22



Smoke Testing

A common approach for creating “daily builds” for product software
Smoke testing steps:

Software components that have been translated into code are
integrated into a “build.”

A build includes all data files, libraries, reusable modules, and
engineered components that are required to implement one or
more product functions.

A series of tests is designed to expose errors that will keep the
build from properly performing its function.

The intent should be to uncover “show stopper” errors that
have the highest likelihood of throwing the software project
behind schedule.

The build is integrated with other builds and the entire product
(in its current form) is smoke tested daily.

The integration approach may be top down or bottom up.
18 / 22



WebApp Testing - I

The content model for the WebApp is reviewed to uncover
errors.
The interface model is reviewed to ensure that all use cases can
be accommodated.
The design model for the WebApp is reviewed to uncover
navigation errors.
The user interface is tested to uncover errors in presentation
and/or navigation mechanics.
Each functional component is unit tested.

19 / 22



WebApp Testing - II

Navigation throughout the architecture is tested.
The WebApp is implemented in a variety of different
environmental configurations and is tested for compatibility
with each configuration.
Security tests are conducted in an attempt to exploit
vulnerabilities in the WebApp or within its environment.
Performance tests are conducted.
The WebApp is tested by a controlled and monitored
population of end-users. The results of their interaction with
the system are evaluated for content and navigation errors,
usability concerns, compatibility concerns, and WebApp
reliability and performance.

20 / 22



Other sorts of testing

Validation testing
Focus is on software requirements

System testing
Focus is on integration of sub-systems

Alpha/Beta testing
Focus is on customer usage
Alpha testing = done by employees of development organisation,
simulates typical use tasks
Beta testing = done by releasing to a limited number of real
users

21 / 22



Other sorts of testing, cont’d

Recovery testing
forces the software to fail in a variety of ways and verifies that
recovery is properly performed

Security testing
verifies that protection mechanisms built into a system will, in
fact, protect it from improper penetration

Stress testing
executes a system in a manner that demands resources in
abnormal quantity, frequency, or volume

Performance Testing
test the run-time performance of software within the context of
an integrated system

22 / 22


