CITS5501 Software Testing and Quality
Assurance
System, integration and regression testing

Unit coordinator: Arran Stewart

1/22



Overview

o
(]
o
o
o

Testing strategy
Integration testing
Regression testing
“Smoke” testing
Web testing

2/22



Testing strategy

Types of testing:

System engineering

egration test

jdation test

System test

3/22



Testing strategy

o Typically, we begin by ‘testing-in-the-small’ and move toward
‘testing-in-the-large’
o Start with units (functions/classes)
o Then start integrating them

4/22



Testing strategy

o While doing unit testing, we will typically make use of
“mocks” /doubles in place of other units or modules

@ In integration testing, we can test how units or modules work
together

5/22



Integration testing

@ The entire system is viewed as a collection of subsystems (sets
of classes) determined during the system and object design.

o The order in which the subsystems are selected for testing and
integration determines the testing strategy

6/22



Integration testing strategies

Main options:

Big bang integration (nonincremental)
Bottom up integration

Top down integration

Sandwich testing

Variations of the above

®© ©6 6 0 o

7/22



Top Down Integration

top module is tested with
stubs

/ stubs are replaced one at
a time, "depth first"
! i as hew modules are integrated,
some subset of tests is re-run

8/22



Bottom-Up Integration

drivers are replaced one at a
time, "depth first"

worker modules are grouped into
builds and integrated

cluster

9/22



Sandwich Testing

Top modules are
tested with stubs

Worker modules are grouped into
builds and integrated

cluster

10/22



Pros and cons of bottom up integration testing

@ Pro: Systems tested as they are ready
e Con: Typically tests one important subsystem (Ul) last

11/22



Pros and cons of top-down integration testing

Pro:

o Test cases can be defined in terms of the functionality of the
system (functional requirements)

Cons:

o Writing stubs can be difficult: Stubs must allow all possible
conditions to be tested.

@ Possibly a very large number of stubs may be required,
especially if the lowest level of the system contains many
methods.

@ One solution to avoid too many stubs: Modified top-down
testing strategy

o Test each layer of the system decomposition individually before
merging the layers

o Disadvantage of modified top-down testing: Both stubs and
drivers are needed 12/22



Steps in integration testing

©

00 © O

Based on the integration strategy, select a component to be
tested. Unit test all the classes in the component.

Put selected component together; do any preliminary fix-up
necessary to make the integration test operational (drivers,
stubs)

Do functional testing: Define test cases that exercise all uses
cases with the selected component

Do structural testing: Define test cases that exercise the
selected component

Execute performance tests

Keep records of the test cases and testing activities.

Repeat steps 1 to 7 until the full system is tested.

The primary goal of integration testing is to identify errors in
the (current) component configuration.

13/22



Which integration strategy should you use?

o Factors to consider

e ©6 o o

Amount of test harness (stubs &drivers)
Location of critical parts in the system
Availability of hardware

Availability of components

Scheduling concerns

14/22



Which integration strategy should you use?, cont'd

o Bottom up approach
o good for object oriented design methodologies
o Test driver interfaces must match component interfaces
o Top-level components are usually important and cannot be
neglected up to the end of testing
o Detection of design errors postponed until end of testing

15/22



Which integration strategy should you use?, cont'd

o Top down approach
o Test cases can be defined in terms of functions examined
o Need to maintain correctness of test stubs
o Writing stubs can be difficult

16 /22



Regression testing

o Mentioned in previous lectures:
o Regression testing is the re-execution of some subset of tests
that have already been conducted, to ensure that changes have
not propagated unintended side effects

@ Whenever software is corrected, some aspect of the software
configuration (the program, its documentation, or the data
that support it) is changed.

o Regression testing helps to ensure that changes (due to testing
or for other reasons) do not introduce unintended behavior or
additional errors.

o Regression testing may be conducted manually, by re-executing
a subset of all test cases or using automated tools.

17/22



Smoke Testing

A common approach for creating “daily builds” for product software
Smoke testing steps:

o Software components that have been translated into code are
integrated into a “build.”

o A build includes all data files, libraries, reusable modules, and
engineered components that are required to implement one or
more product functions.

o A series of tests is designed to expose errors that will keep the
build from properly performing its function.

o The intent should be to uncover “show stopper” errors that
have the highest likelihood of throwing the software project
behind schedule.

@ The build is integrated with other builds and the entire product
(in its current form) is smoke tested daily.
o The integration approach may be top down or bottom up.

18/22



WebApp Testing - |

@ The content model for the WebApp is reviewed to uncover
errors.

o The interface model is reviewed to ensure that all use cases can
be accommodated.

o The design model for the WebApp is reviewed to uncover
navigation errors.

@ The user interface is tested to uncover errors in presentation
and/or navigation mechanics.

o Each functional component is unit tested.

19/22



WebApp Testing - Il

o Navigation throughout the architecture is tested.

@ The WebApp is implemented in a variety of different
environmental configurations and is tested for compatibility
with each configuration.

@ Security tests are conducted in an attempt to exploit
vulnerabilities in the WebApp or within its environment.

@ Performance tests are conducted.

o The WebApp is tested by a controlled and monitored
population of end-users. The results of their interaction with
the system are evaluated for content and navigation errors,
usability concerns, compatibility concerns, and WebApp
reliability and performance.

20/22



Other sorts of testing

o Validation testing
e Focus is on software requirements
o System testing
o Focus is on integration of sub-systems
o Alpha/Beta testing
o Focus is on customer usage
o Alpha testing = done by employees of development organisation,
simulates typical use tasks
o Beta testing = done by releasing to a limited number of real
users

21/22



Other sorts of testing, cont'd

(]

Recovery testing
o forces the software to fail in a variety of ways and verifies that
recovery is properly performed
Security testing
o verifies that protection mechanisms built into a system will, in
fact, protect it from improper penetration
Stress testing
o executes a system in a manner that demands resources in
abnormal quantity, frequency, or volume
o Performance Testing
o test the run-time performance of software within the context of
an integrated system

(]

(]

22/22



