
CITS5501 Software Testing and Quality
Assurance

Syntax-based testing

Unit coordinator: Arran Stewart

1 / 57

Recap – models and testing

Sometimes, we model a method (or module, or subsystem, or
system) as a function from inputs to outputs.
And then we can ask, “What does the input domain look like?
Could I partition it up, to make the task of testing more
tractable? Can I identify particularly important values in those
partitions?”
This approach leads to Input Space Partitioning.

2 / 57

Models and testing

If the thing we’re modeling is a “unit”, then we’ve now
developed a unit test. If it is a collection of units, or a system,
then we’ve now developed an integration test or a system test.

3 / 57

Models and testing

We’ve seen we can modelling a portion of a system as a graph.
And we can then ask “Have I thoroughly explored the
execution/traversal of this graph? What test inputs would I
need, in order to explore this particular path through the
graph?”
This can lead us to developing new tests (which exercise
particular paths through the graph), and/or noticing problems
with existing tests (they leave some paths unexplored), or
noticing problems with the graph we’re looking at (e.g. we’ve
found “dead code”, which currently is impossible to execute;
but which could cause problems if it becomes “live”).

4 / 57

Models and testing

And we can apply graph-based techniques to anything we could
model as a graph . . .

classes, and the connections (coupling or inheritance) between
them
ER diagrams
data flow between variables
data flow between components (e.g. in a secure system)
organization charts? Perhaps. . .

5 / 57

Models and testing

Models are abstractions and simplifications, and usually, there’s
no one model that serves all purposes.
Often, we can make a model more realistic, but only at the
cost of more complexity.

e.g. When (statically) modeling control flow in software, we may
have to make simplifications, because we don’t know exactly
what the dynamic behaviour will be.

It is up to us to decide on a balance between abstraction and
realism. Both can help highlight problems we otherwise might
have missed.

6 / 57

Syntax-based testing

Many sorts of software artifact can be modeled as something
Amman and Offut call “syntax”.
Basically, this means “potentially recursive structures,
individual instances of which can be modeled as trees (directed
acyclic graphs)”.
We will see several examples of that, and in particular,
mutation testing.

7 / 57

Using the Syntax to Generate Tests

Many software artifacts follow strict syntax rules
e.g. The syntax for programming languages is often expressed
as a grammar in using a formalism such as BNF (Backus-Naur
Form)

Syntactic descriptions can be obtained from many sources:
program source code
design documents
input descriptions (e.g. file formats, network message formats,
etc)

Tests are created with two general goals
Cover the syntax in some way
Violate the syntax (invalid tests)

8 / 57

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

An example of syntax-generated tests

Mutation-based fuzzers use a body of inputs, and generate new
ones (some valid, some invalid) by repeatedly mutating existing
inputs
Often the fuzzers aim to crash the program (get it to exit
unexpectedly, and/or, in the case of memory-unsafe languages
like C and C++, violate memory integrity).
e.g. We could start with a set of valid PNG files, and use a
mutation-based fuzzer to produce many variants of these
Often we’ll want to be sure that our software handles any sort
of input gracefully – regardless of whether the input is valid or
invalid, the program should give some sort of “proper” result
(even if that is just an error message). It shouldn’t (usually) go
into an erroneous state.

9 / 57

What is a grammar?

A syntax is defined by a grammar, and the best way to explain what
a grammar is, is to show an example.

Let us suppose we want to define a very simple language, which lets
us write mathematical expressions involving single-digit numbers.
The language lets us add and subtract them using “+” and “−”,
and group things using parentheses.

10 / 57

Example – arithmetic expressions

Some string will be valid in our language (like “(3 + 2) - 5”) and
some will not (like “3++-(”).

The quivalent of “words” in our language are called terminal
symbols – they are like atoms, in that they are the smallest,
indivisible parts of our language.

They consist of the numerals 0-9, and the symbols “+ - ()”.

11 / 57

Example – arithmetic expressions

We can group these symbols into categories:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

This says “A digit is defined as either the numeral”0“, or the
numeral”1“, or the numeral”2", . . . (etc.)

We read ::= as “is defined as” or “can be expended to”, and | as
“or”.

12 / 57

Example – arithmetic expressions

Things that aren’t terminals are called non-terminal symbols.

We can say, “An expression is either a digit, or, a smaller expression
plus some other smaller expression.”

<expression> ::= <digit> | <expression> "+" <expression>

13 / 57

Example – arithmetic expressions

Our whole grammar:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<expression> ::= <digit>

| <expression> "+" <expression>

| <expression> "-" <expression>

| "(" <expression> ")"

14 / 57

BNF grammars

Formally, what we have used here is called a “Backus-Naur
Form (BNF) specification of a context-free grammar”, but we
won’t worry too much about the technical details.

A BNF specification is a set of derivation rules, also called
production rules

They look like this:

<integer> ::= <digit>|<integer><digit>

We read this as: “An integer consists of either (a) a digit, or
(b) an integer followed by another digit”

15 / 57

BNF grammars (cont’d)

To define “digit”:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

The thing on the left-hand side is a nonterminal (e.g. integer,
digit);
a symbol that never appears on the left-hand side is a terminal
(e.g. 0, 1)

16 / 57

BNF grammars (cont’d)

BNF rules are of the form:
<symbol> ::= expression

expression contains one or more sequences of symbols;
sequences are separated by a vertical bar (“|”), representing a choice

There will normally also be a start symbol, representing the “top
level” of whatever construct we’re specifiying.

e.g. for some programming language:
<program_file> ::= <import_statements><declarations><definitions>

Each possible rewriting (i.e., each alternative) of a non-terminal is called a
production.

17 / 57

BNF grammars (cont’d)

Special symbols in BNF:

::= means “is defined as”.
| means “or”
< and > are used to surround non-terminal names.

18 / 57

Use of grammars

Grammars can be used to build recognizers (programs which
decide whether a string is in the grammar – i.e., parsers)
and also generators, which derive strings of symbols.

19 / 57

Alternative formalisms

BNF works well for things in textual format (including the
source code of programming language files, HTML documents,
JSON documents, and so on).
But for data in binary format (for instance, TCP packets or
JPEG files), a frequently-used formalism is ASN.1 (“Abstract
Syntax Notation One”).
We won’t be examining ASN.1 in detail, but similar
considerations apply.

20 / 57

https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

Coverage criteria

If we’re developing tests based on syntax . . .
The most straightforward coverage criterion:
use every terminal and every production rule at least once

Terminal Symbol Coverage (TSC) Test requirements contain each
terminal symbol t in the grammar G.

Production Coverage (PDC) Test requirements contain each
production p in the grammar G.

21 / 57

Coverage criteria (cont’d)

Production coverage subsumes terminal symbol coverage;
if we’ve used every production, we’ve also used every terminal.

22 / 57

Coverage criteria – an impractical one

We could aim to cover all possible strings

Derivation Coverage (DC) Test requirements contain every possible
string that can be derived from the grammar G.

But except in special cases, this will be impractical

23 / 57

Bounds on coverage

Example grammar:
<integer> ::= <digit>|<integer><digit>

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |
"7" | "8" | "9"

The number of tests to get TS coverage is bounded by the number
of terminal symbols (ten, here)
To get production coverage, that depends on the number of
productions (here: 2 for the first rule, 10 for the second – so, 12)
Whereas the number of strings that can be generated – needed for
derivation coverage – is actually infinite.

(likewise for, say, the set of all possible Java programs)
Even for finite grammars (e.g. some file formats), DC will usually
require an infeasibly large number of tests

24 / 57

Data structures

Typically, for any format we specify syntactically (like JPEG,
GIF etc.), we’ll have an accompanying data structure that
mirrors that the structure of the syntax, in order to manipulate
in-memory objects representing that format.
E.g. see the JpegImageData class from the Apache Commons
Imaging library for Java, or the png_struct_def for the
libpng C library.

25 / 57

https://commons.apache.org/proper/commons-imaging/apidocs/index.html
https://sourceforge.net/p/libpng/code/ci/libpng16/tree/pngstruct.h#l142

Data structures

But even for data structures which don’t represent something
necessarily stored in binary or textual format, we can consider
them as having a syntax-like structure.

For instance, what is a linked list? In Java-like syntax:

class node<V> {

V value;

node<V> next;

};

It is either:
(1) a null pointer, or (2) a value prepended to a list.

26 / 57

Data structures

Note that this seems quite similar in structure to our grammar
for integers.
Let’s consider linked lists of booleans
Suppose we write the null pointer, an empty list, as “[]”, and
nodes containing boolean values as “T” and “F”. and represent
prepending as a colon, “:”
Then we can actually write a BNF grammar for linked lists.

27 / 57

“Linked list” grammar

<bool> ::= "T" | "F"

<list> ::= "[]" | <bool>":"<list>

So [] is a list, as is T:[], and F:T:[].
[]:[] is not a valid list, nor is []:T.

28 / 57

“Linked list” grammar

<bool> ::= "T" | "F"

<list> ::= "[]" | <bool>":"<list>

So [] is a list, as is T:[], and F:T:[].
[]:[] is not a valid list, nor is []:T.

29 / 57

Data structures

What about a linked list, where the value type V is, say,
another class, Person:

class Person {

PersonID personID;

bool isStaff;

int age;

}

Which in turn refers to the PersonID class.

30 / 57

Data structures

What grammars and data structures have in common is that
they both have terminals (in data structures, these are atomic
or “primitive” values that we cannot, or choose not to, break
down any further), and they define aggregate structures in
terms of simpler structures, in a potentially recursive way.
So we can use much the same principles to see if our tests of
them have good coverage, or to generate them randomly, etc.

31 / 57

Trees

We can draw a tree structure for an expression adhering to some
particular syntax called a parse tree:1

(Here, “S” stands for “sentence”, “VP” for “verb phrase”, “V” for
“verb”, “DP” for “determiner phrase” – basically something that picks
out a particular entity.)

1Image from https://commons.wikimedia.org/wiki/File:
Precedent_example_1_decl_sent.png

32 / 57

https://commons.wikimedia.org/wiki/File:Precedent_example_1_decl_sent.png
https://commons.wikimedia.org/wiki/File:Precedent_example_1_decl_sent.png

Trees

The parse tree shows what productions should be followed to
parse (or alternatively, to generate) a particular string.
In practice, the trees formed by data structures (as opposed to
grammars) are of a slightly different sort – they are abstract
syntax trees rather than parse trees – but we will not be too
concerned with the details.

33 / 57

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree

Generators

Suppose we had the grammar:

<Sentence> ::= <NounPhrase><Predicate>
<NounPhrase> ::= "Alice" | "Bob" | "the hacker"
<Predicate> ::= <Verb><NounPhrase>
<Verb> ::= "hires" | "defeats"

Then we can see that “Alice hires Bob” and “Bob defeats the hacker”
are valid strings in the language this grammar defines (modulo some
whitespace).

And we can see how we could easily generate random valid sentences
that conform to these rules.

Being able to generate things that follow a syntax-like structure is
extremely useful for testing.

34 / 57

Generators – network traffic

We can use it to create traffic generators, for instance – we could
generate random valid TCP traffic with which to test a router.
TCP packets follow a syntax-like structure, so it’s fairly
straightforward to generate them randomly.
A TCP packet consists of: 2 bytes representing a source port (0
through 65535), 2 bytes representing a destination port, then 4 bytes
representing a “sequence number”, then . . . (see the TCP
specification for detailed rules).
Not all the validity rules for a TCP packet can be expressed in a
syntactical way – for instance, it contains a checksum towards the
end, which is calculated based on previous information – but quite a
bit can.
This is very handy for “stress” or “load” or “performance” testing –
generating large amounts of data, and seeing how our system
performs under the load.

35 / 57

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Generators – http traffic

HTTP requests for web pages also follow a syntax, so we could easily
generate random HTTP traffic (for instance, to stress-test a
web-server, and see how it performs under high load).

The full syntax for HTTP requests is larger than this,2 but the start
of a simplified version of it would look something like:

<request> ::= <GETrequest> | <POSTrequest>
<GETrequest> ::= "GET" <space> <URI> <space> <HTTPversion>

<lineend> <getheaders> <getbody>
...

(i.e., HTTP requests are either GET or POST requests, and GET
requests start with the keyword GET then a space, then a URI, and so
on. . .)

2See IETF RFC 2616,
https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

36 / 57

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

Generators – http traffic

The vast majority of randomly generated HTTP requests would
not be for valid URIs, and would result in 404 errors.
If we wanted to generate, not just random HTTP requests, but
requests that actually hit part of a website, we can add in
additional constraints to ensure that happens.
(E.g. We might start by only generating URLS that begin with
https://myblog.github.io/, if we were testing a blog site
hosted on GitHub.)

37 / 57

Generators

Likewise, HTML and XML documents, JSON, and many other
formats all follow syntactical rules, so we can randomly
generate them.
Likewise for custom formats we may come up with.

e.g. If we were writing a word processor, we might want to be
able generate very large random documents in our
word-processor format, to see how our program holds up.

38 / 57

Generators

For common formats, there are often already data generators
with many capabilities:

Tools for constructing and generating network traffic: Ostinato,
Scapy Traffic Generator, flowgrind, jtg . . . see this list for many
more.
HTTP request generators: see for example httperf
Random bitmap generators: see for example random.org

If not, it is perfectly possible to write our own.

39 / 57

https://ostinato.org/
https://pypi.org/project/ScapyTrafficGenerator/
http://flowgrind.net/
http://www.netlab.tkk.fi/~jmanner/jtg.html
http://www.grid.unina.it/software/ITG/link.php
https://github.com/httperf/httperf
https://www.random.org/bitmaps/

Generators and data structures

Things to note when generating data structures:

In languages with pointers or references, it may be possible to
have data structures that contain cycles, meaning they are no
longer trees but graphs.
For instance, we could have two linked list nodes A and B, and
make A’s next reference point to B, and B’s point to A.
(A cyclic linked list.)
It’s still possible to generate random data of that sort, but
doing so takes us beyond our current scope.

40 / 57

More complex rules for validity

There may be rules for validity of a format (like the existence
of checksums) that can’t be captured by a grammar.
This is frequently the case, actually. BNF lets us describe what
are known as “context-free” grammars, and a specification for
a format may include requirements that are impossible or
inconvenient to specify using BNF.

e.g. In a valid Java program, variables have to be declared
before they are used; it’s an error to assign a string literal to an
int; and many other rules.

We may be able to use simple calculations to generate or verify
those.
(e.g. to verify or generate a checksum)
Or we may have to apply more complex rules – these are
outside the scope of this unit.

41 / 57

Using generators for testing

Generating random, valid values is useful for performance
testing, as just described – but it is also useful for
property-based testing, which we will see more of later.
What is property-based testing? It’s a sort of (usually
randomized) testing which checks that invariants about
functions hold.

42 / 57

Property-based testing

Consider the following method specification:
List.remove(Object o): Search the list for elements which are
equal to object o (using .equals()). If there are any, then the first
such element is removed. Otherwise, the method does nothing.

If Lbefore is the length of the list before we execute remove(), and
Lafter is the length of the list after we execute it, then the following
invariant holds:

(Lafter = Lbefore) ∨ (Lafter = Lbefore − 1)
Let’s call this invariant Inv1, for short.

It is certainly good practice to write tests for remove() based on
Input Space Partitioning – e.g. constructing small lists that do or
don’t contain the element being searched for, and constructing test
inputs based on that.

43 / 57

Property-based testing

But if we can identify invariants like Inv1, that we think will
always hold, then we can generate random data to improve our
confidence that this is so.
If our test framework generates a few thousand sample lists,
and our invariant holds for all of them, we can be fairly
confident that this theory about our method is true.
(We cannot be certain – we might have failed to generate a
test case that exercises some particular fault – perhaps our
method fails on extremely long lists, and we never generated
those – but our confidence is definitely improved.)

44 / 57

Property-based testing

Testing frameworks that perform property-based testing include:

Hypothesis, for Python
QuickTheories, for Java
jsverify, for JavaScript
QuickCheck, the inspiration for most of the others, for Haskelll
. . . Many more listed by David R. MacIver, the developer of
Hypothesis.
We will look at some of these testing frameworks in more
detail.

45 / 57

https://hypothesis.works/articles/intro/
https://github.com/quicktheories/QuickTheories
https://github.com/jsverify/jsverify
http://hackage.haskell.org/package/QuickCheck
https://hypothesis.works/articles/quickcheck-in-every-language/

Applications of syntax-based testing

Mutation-based fuzzers use a body of inputs, and generate new
ones (some valid, some invalid) by repeatedly mutating existing
inputs
e.g. We could start with a set of valid PNG files, and use a
mutation-based fuzzer to produce many variants of these
Often we’ll want to be sure that our software handles any sort
of input gracefully – accepting it if valid, but detecting the
situation when input is invalid

46 / 57

Mutation testing

Grammars describe both valid and invalid strings

A mutant is a variation of a valid string
Mutants may be valid or invalid strings

Mutation is based on “mutation operators” and “ground
strings”

47 / 57

What is mutation ?

We are performing mutation analysis whenever we

use well defined rules (i.e. operators)

defined on syntactic descriptions (i.e. grammars)

to make systematic changes

to the syntax or to objects developed from the syntax
the objects are “ground strings”

48 / 57

Mutation testing – definitions

Ground string: A string in the grammar
(The term “ground” basically means “not having any variables”
– in this context, not having any non-terminals)

Mutation operator: A rule that specifies syntactic variations of
strings generated from a grammar
Mutant: The result of one application of a mutation operator

A mutant is a string

49 / 57

Killing Mutants

When ground strings are mutated to create valid strings, the
hope is to exhibit different behavior from the ground string
Killing Mutants : Given a mutant m for a derivation D and a
test t, t is said to “kill” m iff the output of t on D is different
from the output of t on m

50 / 57

Syntax-based coverage criteria – mutant coverage

We can define a coverage criterion in terms of killing mutants:

Mutation Coverage (MC) For each mutant m, the test
requirements contains exactly one requirement, to kill
m.

Coverage in mutation equates to number of mutants killed
The amount of mutants killed is called the mutation score

51 / 57

Coverage criteria – creating invalid strings

When creating invalid strings, two simple criteria –
It makes sense to either use every operator once or every
production once

Mutation Production Coverage (MPC) For each mutation operator,
TR contains several requirements, to create one
mutated string m that includes every production that
can be mutated by that operator.

Mutation Operator Coverage (MOC) For each mutation operator,
TR contains exactly one requirement, to create a
mutated string m that is derived using the mutation
operator.

52 / 57

Mutation example

A grammar:

Stream ::= action*
action ::= actG | actB

actG ::= "G" s n

actB ::= "B" t n

s ::= digit{1-3}

t ::= digit{1-3}

n ::= digit{2} "." digit{2} "." digit{2}

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

Uses “*”, the “Kleene star”, to represent “zero or more”
Uses braces to represent “n to m occurrences” or “n
occurrences”

53 / 57

Mutation example (cont’d)

A ground string:

G 23 08.01.90

B 19 06.27.94

54 / 57

Mutation example (cont’d)

Some mutation operators:
Exchange actG with actB
replace digits with any other possible digit

55 / 57

Mutation example (cont’d)

Using mutation operator coverage (MOC):

G 23 08.01.90

B 19 06.27.94

mutated to:

B 23 08.01.90

B 15 06.27.94

56 / 57

Mutation example (cont’d)

Using mutation operator coverage (MOC):
B 22 08.01.90 G 19 06.27.94
G 13 08.01.90 B 11 06.27.94
G 3 3 08.01.90 B 12 06.27.94

57 / 57

