
Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

CITS5501 Software Testing and Quality
Assurance

Input Space Partition Testing

Unit coordinator: Arran Stewart

1 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Highlights

How we choose values for tests
Approaches to testing
Model-based testing
Input space partitioning

2 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Workshop feedback

3 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Purpose of a specification

What is the purpose of a specification?

4 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Things a specification doesn’t do

Provide you with an understanding of the implementation of a
software component
Remind you of how code works
Make testing “easier and faster”
Aid you in “keeping track of your code”
Explains the behaviour of a portion of code

5 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Overall

Few people were able to identify the relevant criteria and justify an
answer.

6 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Approaches to testing

7 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Approaches to testing

For most software components (and other artifacts, such as
machinery, etc.), it’s possible to consider them in two ways, when
testing:

knowing nothing about the internal workings of the component,
we can focus on its intended functionality, and conduct tests
that demonstrate each aspect of the functionality, and attempt
to uncover any errors.

This approach is called “black-box” testing
knowing the internal workings of the components, we can write
tests that try to check the internal operations are correctly
performed, and that all internal components have been
adequately exercised.

This approach is called “white-box” testing

In reality, many testing approaches make use of aspects of both.
8 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Approaches to testing

Example of “black-box” testing:
The sorts of unit tests we have seen so far: they are derived
from the specifications for methods, and treat the method as a
“black box” that takes in input and produces output, without
considering how it does it.

Example of “white-box” testing:
Looking at the source code for a method, and ensuring that
paths of execution through the method have been adequately
tested.

9 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Black-box testing

Signature of method, plus specification using Javadoc:

1 /** Remove/collapse multiple spaces.

2 *
3 * @param String string to remove multiple spaces from.

4 * @return String */

5 public static String collapseSpaces(String argStr)

10 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Black-box testing

Specifications need not be for methods, they can be for
software components, or hardware, or whole systems

11 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

White-box testing
A Java method for collapsing sequences of blanks, taken from the StringUtils
class of Apache Velocity (http://velocity.apache.org/), version 1.3.1.

1 /** Remove/collapse multiple spaces.
2 *
3 * @param String string to remove multiple spaces from.
4 * @return String */
5 public static String collapseSpaces(String argStr) {
6 char last = argStr.charAt(0);
7 StringBuffer argBuf = new StringBuffer();
8 for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++) {
9 char ch = argStr.charAt(cIdx);

10 if (ch != ' ' || last != ' ') {
11 argBuf.append(ch);
12 last = ch;
13 }
14 }
15 return argBuf.toString();
16 }

12 / 116

http://velocity.apache.org/

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Control-flow testing outline

1 Use the source code (or pseudocode) to produce a control flow
graph.

2 Using the graph produce a set of tests for the given program.

13 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Constructing the graph

In a control flow graph, nodes represent points in the program
control flow can go “from” or “to”
Loops, thrown exceptions and gotos (in languages that have
them) are locations control flow can go from – statements
representing these spots are “sources”
Locations control flow can go to are “sinks”

14 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Constructing the graph
A

B

6-7, 8A - initializer

8B - loop condition

C
9

D
10

E 11-12

G 15

F
8C - loop increment

ch != ' ' || last != ' '

not(ch != ' ' || last != ' ')

15 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Black-box techniques

When we design tests based on the interface – “black-box”
testing – we normally work off the specification for the item,
we don’t care about the details of the implementation
Input space partition testing (this lecture). We don’t need to
look at the code within an item being tested – we just consider
its parameters or inputs.

16 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Other black-box techniques

In the Pressman textbook you’ll see mention of other black box
techniques, e.g. “boundary value analysis”

i.e., include tests which have inputs at the “boundaries” of
ranges of values
this helps detect, for instance “off-by-one” and “fencepost”
errors

Boundary value analysis is actually incorporated into the ISP
testing procedure covered in this lecture

when “modeling the input domain”, we identify valid values,
invalid, boundaries, “normal use”, and so on

17 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Benefits of black box testing

Helps find
functionality that is specified but not implemented
functionality that is implemented but incorrect

18 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

White-box testing

We can also design tests by looking at the internal details of an
item to be tested – “white-box” or “clear-box” testing.
This is also sometimes called structural testing, since it looks
at the internal structure of an item to be tested
Here, we do care about the implementation

19 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

White-box testing – examples

As part of white box testing, we might try to ensure that
all internal data structures have been checked
all loops have been checked
where there is some sort of branching statement (if-else, case,
etc.), all the possible branches have been tested
. . . and so on.

20 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Why perform white-box testing

Why perform white-box testing?
Isn’t black box enough? – after all, it tests the functionality

21 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Why perform white-box testing (2)

What if we’ve failed to identity some particular scenario (set of
inputs) in black box testing, and not written a test for it?

It can be difficult to think of unusual inputs/scenarios

What if the environment, or some other part of the system,
changes?

code that was previously “dead code”, and never executed,
might now become “live” – and may contain errors

Some sorts of errors (e.g. typos) are as likely to occur on
unusual or uncommon paths of execution, as on anywhere else.

White box testing helps ensure we’ve considered those paths.

22 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Why perform white-box testing (3)

One question that is often asked is “Do we have enough tests?”
White box testing may not answer that question – but it can
identify parts of a system that haven’t been tested.

23 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Types of white-box testing

In practice and in the literature, many different techniques are
identified:

branch/decision testing
have all branches in decisions been exercised?
have all parts of boolean expressions been exercised?

control flow testing
uses a program’s control flow graph as a model

data flow testing
flow of data between variables – are there variables that are
declared but not used, or vice versa? Declared multiply? Not
initialized before use? Deallocated before use? Used before
being validated?

statement coverage
is every statement executed at least once?

modified condition/decision coverage (used in avionics)
path testing
prime path testing

24 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Alternative view – model-based testing

When doing white-box testing of the collapseSpaces function, we
look at the control-flow graph for the function, and try to ensure
our tests adequately exercise paths through the graph (called
checking the test coverage of the graph).

But there are many other sorts of “graphs” we might want to check
for test coverage, and not all are “internal”, “white-box” views of
something.

25 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Activity diagrams
For instance, activity diagrams are way of modelling a user’s
interactions with a system.

user enters userID

system displays

and password

userID and

password correct?

prompt

system displays

error message
[no]

system displays

welcome message

[yes]

...

26 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Activity diagrams

These too form a sort of graph, and we can ask whether out tests have
exercised paths through the graph sufficiently.

Activity diagrams don’t look at “source code” or the “inside” of a system –
they consider the “outside” (a user’s interaction with the system).

So they are a sort of “black-box” testing, yet the same methods we use for
control-flow analysis – a form of “white-box” testing – are applicable.

27 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

State diagrams

State diagrams show states something can be in, and transitions
between them.1

1Courtesy Wikipedia, https://en.wikipedia.org/wiki/State_diagram.
28 / 116

https://en.wikipedia.org/wiki/State_diagram

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

State diagrams

A state diagram also is a kind of graph, so we can look at whether
our tests have exercised paths through it sufficiently.

Is it “black-box” or “white-box” testing?

29 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Alternative view – model-based testing

Rather than classifying something as being “black-box” or
“white-box” testing, a more useful approach is to consider various
models of a software system, and ask “What sort of model is this?
And what sort of testing techniques can be applied?”

30 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Model-based testing – functions

If we can treat the model as a function from inputs to outputs
– then we can apply input-space partitioning to it.

Example: Unit tests based on Javadoc specification
Example: System testing based on specifications

31 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Model-based testing – graphs

If we can treat the model as a graph – a network of nodes –
then we can apply graph-based techniques to it.

Example: Control flow analysis

32 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Model-based testing – logic

If particular parts of the system make “choices” based on
combinations of logical conditions, we can apply logic-based
techniques to it.

Example: Avionics systems are required to have a particular
level of coverage of logic expressions

Sample specification for a system [from Ammann]:

If the moon is full and the sky is clear, release the monster.
If the sky is clear and the wind is calm, release the monster.

33 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Model-based testing – logic vs graphs

Graph-based techniques look at what edges we traverse
between nodes, they don’t look “inside” the nodes –
For any “decision node”, however complex, graph-based
techniques only consider “Which edge do we take out of the
node?”
By contrast, logic-based testing looks “inside” the parts of
boolean expressions making up a “decision point”, and asks
whether we’ve tested those parts sufficiently thoroughly.

34 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Model-based testing – syntax

If the model can be treated as having a “syntax” (a sort of tree-like,
potentially recursive structure), then we can apply syntax-based
techniques to it.
One example of things with “syntax” is, unsurprisingly, natural
language sentences:2

Sentence

NounPhrase

I

VerbPhrase

VerbPhrase

Verb

shot

NounPhrase

Det

an

Noun

elephant

PreposPhrase

Prepos

in

NounPhrase

Det

my

Noun

pajamas

2Diagram adapted from Bird et al (2009). Dialogue from “Animal Crackers”
(1930, dir. V. Heerman).

35 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Model-based testing – syntax

But other things that can be modelled as having a syntax are things
like Java source code (a text format), or binary file formats (such as
PNG graphics files or executable files).

36 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Model-based testing

Our “models” don’t have to be models of source code – they can be
models of, say, database structure, or user interaction with a system,
or class hierarchies, or any other way we find it useful to consider
our system (or some part of it).

37 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input Space Partitioning

38 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Problem – how to choose test values

An example Java method we might want to test:
public boolean findElement (List<Integer> list, Integer elem)
// Effects:
// if list or elem is null throw NullPointerException
// else return true if elem is in the list, false otherwise

What are the possible values for list?
For elem?

39 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input Domains

The input domain for a program contains all the possible
inputs to that program
For even small programs, the input domain is so large that it
might as well be infinite
Testing is fundamentally about choosing finite sets of values
from the input domain
Input parameters define the scope of the input domain

Parameters to a method
Data read from a file
Global variables
User level inputs

Domain for each input parameter is partitioned into regions
At least one value is chosen from each region

40 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Benefits of ISP

Can be equally applied at several levels of testing
Unit
Integration
System

Easy to adjust the procedure to get more or fewer tests

41 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input parameters

N.B.: “Input parameters”, when used to define the cope of the
input domain, cover much more than just “parameters to a
method” –
and “tests” covers more than just “unit tests”
Suppose we are doing final system tests of a binary program
that reads an input file – then the file constitutes an input
paramter.
If the behaviour of a method depends on the values of instance
variables – then those instance variables are also input
parameters.
Input parameters include all values that can affect the
behaviour of the item being tested.

42 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Partitioning domains

Informally:

partitions are a collection of disjoint sets of some domain D
which cover the domain.

They are pairwise disjoint (i.e. none overlap each other)

43 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input domain example

public boolean findElement (List<Integer> list, Integer elem)
// Effects:
// if list or elem is null throw NullPointerException
// else return true if elem is in the list, false otherwise

What constitues the input domain here?

The set of pairs (l , e), where l is drawn from all possible values
for list, and e is drawn from all possible values for elem

What are the possible values for elem?

it could be null

it could be non-null

if it’s non-null, it could be 0, 1, -1, 2, -2, . . .
(232 distinct values)

44 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input domain example

public boolean findElement (List<Integer> list, Integer elem)
// Effects:
// if list or elem is null throw NullPointerException
// else return true if elem is in the list, false otherwise

What constitues the input domain here?

The set of pairs (l , e), where l is drawn from all possible values
for list, and e is drawn from all possible values for elem

What are the possible values for elem?

it could be null

it could be non-null

if it’s non-null, it could be 0, 1, -1, 2, -2, . . .
(232 distinct values)

45 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input domain example

public boolean findElement (List<Integer> list, Integer elem)
// Effects:
// if list or elem is null throw NullPointerException
// else return true if elem is in the list, false otherwise

What constitues the input domain here?

The set of pairs (l , e), where l is drawn from all possible values
for list, and e is drawn from all possible values for elem

What are the possible values for elem?
it could be null

it could be non-null

if it’s non-null, it could be 0, 1, -1, 2, -2, . . .
(232 distinct values)

46 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input domain example

public boolean findElement (List<Integer> list, Integer elem)
// Effects:
// if list or elem is null throw NullPointerException
// else return true if elem is in the list, false otherwise

What constitues the input domain here?

The set of pairs (l , e), where l is drawn from all possible values
for list, and e is drawn from all possible values for elem

What are the possible values for elem?
it could be null

it could be non-null

if it’s non-null, it could be 0, 1, -1, 2, -2, . . .
(232 distinct values)

47 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input domain example

public boolean findElement (List<Integer> list, Integer elem)
// Effects:
// if list or elem is null throw NullPointerException
// else return true if elem is in the list, false otherwise

What constitues the input domain here?

The set of pairs (l , e), where l is drawn from all possible values
for list, and e is drawn from all possible values for elem

What are the possible values for elem?
it could be null

it could be non-null

if it’s non-null, it could be 0, 1, -1, 2, -2, . . .
(232 distinct values)

48 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input domain example

public boolean findElement (List<Integer> list, Integer elem)
// Effects:
// if list or elem is null throw NullPointerException
// else return true if elem is in the list, false otherwise

What about the values for list?

list could be null, or it could be non-null
if it is not null, it could have 0 members, 1, 2, 3, . . .
each of those members could then be null or non-null, and if
non-null, could take on values 0, 1, -1, 2, -2, . . .
(232 distinct values)

49 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Input domain example

public boolean findElement (List<Integer> list, Integer elem)
// Effects:
// if list or elem is null throw NullPointerException
// else return true if elem is in the list, false otherwise

So our input domain is infinite.3 It’s true that any one Integer can
only take on a finite set of values (either null, or 232 possible
non-null values), but Lists can be of arbitrary length.

3Or at least, we can treat it as such, for now. We are likely to run into
problems with lists of more than 231 members.

50 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Overview of input-space partitioning approach
Here’s what we’ll be doing:

1 Identify testable functions
2 Identify all parameters to the functions (easy for functions or

methods that don’t depend on state)
3 Model the input domain in terms of characteristics, each of

which can be partitioned.

(Two general ways of doing this – interface-based and
functionality-based)

4 Choose particular partitions, and values from within those
partitions

5 Refine into test values
6 Review!

51 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Characteristics

A characteristic is just some property of an input value which
can be used to partition the domain of the value.

For instance, of a list parameter to a method, we might
consider the following characteristics:

Is the list null, yes or no?
This partitions the domain into two

Is the list empty, yes or no?
Again, this partitions the domain into two

52 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Characteristics, cont’d

If we were considering the findElement method from earlier,
some other characteristics we might consider are:

How many occurrences are there of elem in list?
We might partition this into “0 times”, “1”, “more than 1”

Does elem occur as the first element of list, yes or no?
This partitions the domain into two

Does elem occur as the last element of list, yes or no?
This partitions the domain into two

53 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Characteristics, cont’d

Choosing (or defining) partitions seems easy, but is easy to get
wrong

Suppose we have some program which sorts items in a file F

We might pick as a characteristic of F, “the ordering of the
file”, and partition it into three partitions:

p1 = sorted in ascending order
p2 = sorted in descending order
p3 = arbitrary order

54 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Characteristics, cont’d

But is this really a partitioning?

What if the file is of length 1?
The file will be in all three blocks . . .
That is, disjointness is not satisfied

55 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Characteristics, cont’d

Solution:
Each characteristic should address just one property

File F sorted ascending
b1 = true
b2 = false

File F sorted descending
b1 = true
b2 = false

56 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Properties of Partitions

If the partitions are not complete or disjoint, that means the
partitions have not been considered carefully enough
They should be reviewed carefully, like any design attempt
Different alternatives should be considered

57 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Identifying testable functions

This means functions in the sense of mappings from a domain
to results.

Can apply to methods, classes, components, programs, systems
We can treat a whole program (or hardware+software system)
as a function in this sense – “If I supply these particular inputs,
what output do I get?”

58 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Step 1 – Identifying testable functions

Individual methods or functions have one testable function
Classes will have multiple ‘testable functions”
Programs have more complicated characteristics – modeling
documents such as UML use cases can be used to design
characteristics
Systems of integrated hardware and software components can
use devices, operating systems, hardware platforms, browsers,
etc

59 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Step 2 – Find all the parameters2

Often fairly straightforward, even mechanical
Important to be complete, though

Applied to different levels:

Methods: Actual method parameters, plus state used
state includes: state of the current object; global variables; files
etc. read from

Components: Parameters to methods, plus relevant state

System: All inputs, including files and databases

60 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Step 3 – Model the input domain

We need to characterise the input domain, and divide it into
partitions –
where each partition represents a set of values
This is a creative design step – different test designers might
come up with different ways of modelling the input domain
. . . and there’s not really a mechanical way of checking
whether a modelling is “correct” – needs human review.

61 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Step 4 – choose combinations of values

Each test input has possible values, which we’ve partitioned
But even considering all the combinations of partitions, we end
up with a very large number
Coverage criteria are criteria for choosing subsets of
combinations (more later)

62 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Step 5 – refine combinations into test inputs

At the end of this step, we have actual test cases

63 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Two Approaches to Input Domain Modeling

1 Interface-based approach
Develops characteristics directly from individual input
parameters
Simplest application
Can be partially automated in some situations

2 Functionality-based approach
Develops characteristics from a behavioral view of the program
under test
Harder to develop – requires more design effort
May result in better tests, or fewer tests that are as effective

64 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Interface-Based Approach

Mechanically consider each parameter in isolation
This is an easy modeling technique and relies mostly on syntax
Some domain and semantic information won’t be used

Could lead to an incomplete IDM
Ignores relationships among parameters

65 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Functionality-Based Approach

Identify characteristics that correspond to the intended
functionality
Requires more design effort from tester
Can incorporate domain and semantic knowledge
Can use relationships among parameters
Modeling can be based on requirements, not implementation
The same parameter may appear in multiple characteristics, so
it’s harder to translate values to test cases

66 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Characteristics

Candidates for characteristics :
Preconditions and postconditions
Relationships among variables
Relationship of variables with special values (zero, null, blank,
. . .)

Better to have more characteristics with few partitions

67 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Interface vs Functionality-Based modelling
public boolean findElement (List list, Object elem)
// Effects:
// if list or elem is null throw NullPointerException
// else return true if elem is in the list, false otherwise

Interface-Based Approach:

Two parameters : list, element
Characteristics:
list is null (block1 = true, block2 = false)
list is empty (block1 = true, block2 = false)

Functionality-Based Approach:

Two parameters : list, element
Characteristics:
number of occurrences of element in list
(0, 1, >1)

element occurs first in list
(true, false)

element occurs last in list
(true, false)

68 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Modeling the Input Domain

Strategies for obtaining partitions from a characteristic:
Include valid, invalid and special values
Sub-partition some blocks
Explore boundaries of domains
If a value is of an enumerated type, can draw from each
possible value
Include values that represent “normal use”
Try to balance the number of blocks in each characteristic
Check for completeness and disjointness

69 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Interface-Based IDM example – triType

Suppose we have a method
String triType(int l1, int l2, int l3) that takes in the
lengths of three sides of a triangle, and returns a string telling us
what sort it is.

Possible outputs are:

“invalid” – not a triangle. E.g. (1, 1, 5), $(-5, 3, 4).
“equilateral” – all sides are the same
“isosceles” – not equilateral and not invalid, andd two sides are
the same
“scalene” – everything else

70 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Interface-Based IDM example – triType

How might we categorize the inputs?

Characteristic l1 l2 l3

q1 = “Rel. of side 1 to 0”
q2 = “Rel. of side 2 to 0”
q3 = “Rel. of side 3 to 0”

greater than 0
greater than 0
greater than 0

equal to 0
equal to 0
equal to 0

less than 0
less than 0
less than 0

A maximum of 3× 3× 3 = 27 tests
Some triangles are valid, some are invalid
Refining the characterization can lead to more tests . . .

71 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Functionality-Based IDM – TriTyp

Previous example is interface based – just looks at parameters and
types
A semantic level characterization could use the fact that the three
integers represent a triangle

Characteristic p1 p2 p3 p4
q1 = “Geometric Classification” scalene isosceles, not equilateral equilateral invalid

72 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Using More than One Modelling

Some programs may have dozens or even hundreds of
parameters
Create several small IDMs

A divide-and-conquer approach
Different parts of the software can be tested with different
amounts of rigor

For example, some IDMs may include a lot of invalid values
It is okay if the different IDMs overlap

The same variable may appear in more than one IDM

73 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Step 4 – Choosing Combinations of Values

Covered more later.

Once characteristics and partitions are defined, the next step is
to choose test values

We use criteria – to choose effective subsets

An obvious criterion is to choose all combinations . . .

All Combinations (ACoC): All combinations of blocks from all
characteristics must be used.

Number of tests is the product of the number of blocks in each
This will often be far too large – we will look at ways of using
fewer.

74 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Test criteria

75 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

When all faults have been removed

When we run out of time
When continued testing causes no new failures
When continued testing reveals no new faults
When we cannot think of any new test cases
When some specified test coverage level has been attained
When we reach a point of diminishing returns

76 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

When all faults have been removed
When we run out of time

When continued testing causes no new failures
When continued testing reveals no new faults
When we cannot think of any new test cases
When some specified test coverage level has been attained
When we reach a point of diminishing returns

77 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

When all faults have been removed
When we run out of time
When continued testing causes no new failures

When continued testing reveals no new faults
When we cannot think of any new test cases
When some specified test coverage level has been attained
When we reach a point of diminishing returns

78 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

When all faults have been removed
When we run out of time
When continued testing causes no new failures
When continued testing reveals no new faults

When we cannot think of any new test cases
When some specified test coverage level has been attained
When we reach a point of diminishing returns

79 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

When all faults have been removed
When we run out of time
When continued testing causes no new failures
When continued testing reveals no new faults
When we cannot think of any new test cases

When some specified test coverage level has been attained
When we reach a point of diminishing returns

80 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

When all faults have been removed
When we run out of time
When continued testing causes no new failures
When continued testing reveals no new faults
When we cannot think of any new test cases
When some specified test coverage level has been attained

When we reach a point of diminishing returns

81 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

When all faults have been removed
When we run out of time
When continued testing causes no new failures
When continued testing reveals no new faults
When we cannot think of any new test cases
When some specified test coverage level has been attained
When we reach a point of diminishing returns

82 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

Some other possibilities:

Fault seeding: We deliberately implant a certain number of
faults in a program. If our tests reveal x% of the implanted
faults, we assume they have also only revealed x% of the
original faults; and if our tests reveal 100% of the implanted
faults, we are more confident that our tests are adequate.

(What assumptions are we making here?)

83 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

other possibilities, cont’d:

Mutation testing: We mutate parts of our program
(e.g. altering constants, negating conditionals in loops and “if”
statements). Overwhelmingly, our new mutated program
should be wrong; if no tests identify at as such, we may need
more tests.

(And if some of our tests never seem to kill mutated programs,
they may be ineffective.)

84 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

When to stop testing

other possibilities, cont’d:

Risk-based: We identify risks to our project, and put in place
strategies (including testing) to mitigate or reduce those risks.

We estimate the effort required for those strategies, and their
likely pay-off, and stop when the risk has been reduced to
whatever we consider a tolerable level.

(Also applies to “How formally should we specify our system?”)

85 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Test coverage

Sometimes test plans will specify that tests ought to have some
specified level of coverage of the code.
Test coverage is some measure of the extent to which the
source code of a program has been executed when a particular
test suit runs.
Coverage is measured using test coverage tools.

86 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Test coverage tools

How do test coverage tools work?
Typically, they do what is called instrumenting the code in
some way – adding extra instructions which record how many
times some piece of code has been executed.
This might be done at the source code level, but more often is
done at the byte-code or machine-code level.

87 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Java test coverage tools

Some common test coverage tools for Java include:

JCov
Cobertura
OpenClover

88 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Java test coverage example

Suppose we want to record test coverage using JCov. The steps are:

Compile code as normal (e.g. using javac, an IDE, or a build
tool such as ant)

“Instrument” the compiled bytecode:

$ java -jar jcov.jar Instr [class1.class class2.class ...]

Run our program (or, some test suite). This produces a
result.xml file.

$ java -classpath jcov_file_saver.jar:. MyProg

89 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Java test coverage example, cont’d

Generate a report from the XML file

$ java -jar jcov.jar RepGen result.xml

90 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Code coverage reports

Code coverage results are often produced in HTML format, or
displayed in the IDE. Fragment of a sample report from Cobertura:

91 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Code coverage reports

Typical measures of coverage given by code coverage tools are:

Line coverage (% of lines executed)
Branch coverage (% of branches taken)
Method coverage (% of methods executed)
Condition or predicate coverage (% of boolean conditions
evaluated to both true and false)

92 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

Test coverage criteria

Using the measures from code coverage tools as a criterion for
when you have “enough” tests usually corresponds to some to
some graph or logic based criterion (which we will see shortly).
Some criteria for testing don’t rely on measures of code
coverage, though.
An example are criteria for Input Space Partitioning, which rely
on the analysis of the input domain for a function.

93 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria

94 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria

We’ll illustrate our criteria using the idea of a program which
classifies triangles, based on their edge lengths (this is an old
example in the testing literature)

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid }

public Triangle triType (int side1, int side2, int side3)

95 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – interface approach

public Triangle triType (int side1, int side2, int side3)

Simply considering the parameters alone doesn’t give us much
help.
We might come up with a characteristic for each, namely,
“How does it compare with 0?”, and partition the domain by
asking “Is the parameter less tham, equal to, or great than 0?”

96 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

A better approach is to consider the semantics (functionality)
of the method.
It deals, after all with triangles.
=> model the input space in terms of that
The order of parameters is not important, rather their relation
is.

97 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is

scalene
isosceles
equilateral
invalid

What’s the problem here?

98 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is

scalene

isosceles
equilateral
invalid

What’s the problem here?

99 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is

scalene
isosceles

equilateral
invalid

What’s the problem here?

100 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is

scalene
isosceles
equilateral

invalid

What’s the problem here?

101 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is

scalene
isosceles
equilateral
invalid

What’s the problem here?

102 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is

scalene
isosceles
equilateral
invalid

What’s the problem here?

103 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

Equilateral triangles are a subset of isosceles triangles - our
“partitions” are not disjoint.

Refine the partitions to:
scalene
non-equilateral isosceles
equilateral
invalid

104 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

We might then come up with some inputs which fall into each
partition:

geometric type input value
sca (4,5,6)
iso (3,3,4)
equ (3,3,3)
inv (3,4,8)

105 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

The guideline of “prefer more characteristics, with few
partitions” on the other hand, suggests the following:

characteristic partitions
is scalene (T,F)
is isosceles (T,F)
is equilateral (T,F)
is invalid (T,F)

106 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – all combinations

How many values should we choose?
One possibility: “all combinations” (ACoC)

The number of tests would be
(no. of partitions for char. 1) * (no. of partitions for char. 2) *
. . .

If we used the interface approach (partitioning each parameter
by whether it is less than, equal to, or greater than 0) we get 3
blocks with 3 partitions, so the no. of tests is 3 * 3 * 3 = 27 –
Probably more than we would like.
Using the functionality approach . . .

We will end up with constraints which rule out some
combinations. If a triangle is scalene, it follows it can’t be
isosceles, equilateral, or invalid
We’ll end up with only 8 tests (much more tractable)

107 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – all combinations

Suppose we have a method
myMethod(boolean a, int b, int c), and partition:

the boolean into true and false (let’s call these T and F)
parameter b into “> 04”, ”< 0$” and “equal to zero” (let’s call
these partitions LTZ, GTZ, and EQZ)
parameter c into “even” and “odd” (let’s call these EVEN and
ODD).

108 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – all combinations

Using the “all combinations” criterion, we’d need to write

|{T ,F}| × |{LTZ ,GTZ ,EQZ}| × |{EVEN,ODD}|
= 2× 3× 2
= 12 tests.

Often this will be far more than is feasible.

109 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – base choice

Base choice criteria recognize that some values are important –
they make use of domain knowledge of the program.

For each characteristic, we choose a base choice partition, and
construct a base test by using all the base choice values.

Then we construct subsequent tests by holding all but one base
choice constant, and varying just one characteristic (using all
the partitions for that characteristic)

Number of tests is one base test + one test for each other
partition:

1 + (|char1| − 1) + (|char2| − 1)...

110 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – base choice

Considering our myMethod(boolean a, int b, int c) and the
partitions we specified, if we made our base choices T , GTZ and
EVEN, the required tests would be:

(T ,GTZ ,EVEN)
(F ,GTZ ,EVEN) (vary first parameter)
(T , LTZ ,EVEN) (vary second parameter)
(T ,EQZ ,EVEN) (vary second parameter)
(T ,GTZ ,ODD) (vary third parameter)

111 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – base choice

How do we choose a “base choice”?

must be feasible

Could be:

most likely from an end-use point of view
simplest
smallest
first in some ordering

Test designers should document why a particular base choice was
made

112 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – multiple base choice

Sometimes there are multiple plausible choices for a base
choice.

Multiple Base Choice (MBC):
One or more base choice blocks are chosen for each
characteristic, and base tests are formed by using each base
choice for each characteristic. Subsequent tests are chosen by
holding all but one base choice constant for each base test and
using each non-base choices in each other characteristic.

e.g. For the interface-based approach to the triTyp method, we
might decide both (2,2,2) and (1,1,1) are good base choices.

113 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – multiple base choice

Base choice (2,2,2):

(-1,2,2), (0,2,2)
(2,-1,2), (2,0,2)
(2,2,-1), (2,2,0)

Base choice (1,1,1):

(-1,1,1), (0,1,1)
(1,-1,1), (1,0,1)
(1,1,-1), (1,1,0)

114 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

ISP criteria – constraints

Sometimes combinations of partitions are infeasible
(e.g. the functionality-based case for triangles)
For “all combinations” as a criterion, we simply drop infeasible
combinations
For Base Choice and Multiple Base Choice – we change a base
value to a non-base one to find a feasible combination.

115 / 116

Workshop feedback Approaches to testing Input Space Partitioning Test criteria ISP criteria

References

Bird, S., Klein, E., & Loper, E. (2009) Natural Language Processing
with Python – Analyzing Text with the Natural Language Toolkit.
O’Reilly Media, Inc. URL: https://github.com/nltk/nltk_book

116 / 116

https://github.com/nltk/nltk_book

	Workshop feedback
	Approaches to testing
	Input Space Partitioning
	Test criteria
	ISP criteria

