
Test automation Test cases

CITS5501 Software Testing and Quality
Assurance

Test Automation

Unit coordinator: Arran Stewart

1 / 94

Test automation Test cases

Re-cap

We looked at testing concepts – failures, faults/defects, and
erroneous states
We looked at specifications and APIs – these help us answer
the question, “How do we know what to test against?”
i.e., What is the correct behaviour for some piece of software?
We have discussed what unit tests are, and what they look like

2 / 94

Test automation Test cases

Questions

How do we come up with tests?
How do we know when we have enough tests?
What are typical patterns and techniques when writing tests?
How do we deal with difficult-to-test software?
(e.g. software components with many dependencies)
What sorts of things can be tested?

3 / 94

Test automation Test cases

Questions

How do we come up with tests?
How do we know when we have enough tests?

Both of these are covered in the next few lectures. We look at ways
of grouping together different sorts of input so that we don’t need
to test exhaustively, and at ways of working out how much of the
system we have tested (and ought to test).

4 / 94

Test automation Test cases

Questions

What are typical patterns and techniques when writing tests?

We look at data-driven tests (running “the same” test, but on
different sets of input and expected output), and property-based
tests (testing invariant properties of code or data).

5 / 94

Test automation Test cases

Questions

How do we deal with difficult-to-test software?
(e.g. software components with many dependencies)

We saw that unit tests should test things in isolation – what if
something is hard to isolate?

(e.g. it uses a database)

We discuss the use of mocks to handle this.

6 / 94

Test automation Test cases

Questions

What sorts of things can be tested?

Not just the modules in your code!

We can also test examples and code fragments appearing in
documents (e.g. user manuals), API documentation, and provided
as example programs.

7 / 94

Test automation Test cases

Coming up

Testing is all about running software to see how it behaves.

Static analysis of software consists of any way of inspecting or
analysing software (or some other static artifact) without
running it.

We will look at:
Inspections (analysis by humans)
Static analysis and (late in the course) formal methods

8 / 94

Test automation Test cases

Coming up

Then we will consider software quality more broadly (looking at
processes and standards).

9 / 94

Test automation Test cases

Test automation

10 / 94

Test automation Test cases

Testing frameworks

In the last lecture, we saw some example unit tests.

We said that a unit test tests a unit of code (function, method,
class, module) in isolation, and there are a few properties we
would like it to have (e.g. run very quickly).
But there are other sorts of tests as well – integration tests and
system tests – which tend to run more slowly, and contain
interacting sub-parts. How do we run those sorts of tests?

11 / 94

Test automation Test cases

Testing frameworks

In the last lecture, we saw some example unit tests.
We said that a unit test tests a unit of code (function, method,
class, module) in isolation, and there are a few properties we
would like it to have (e.g. run very quickly).

But there are other sorts of tests as well – integration tests and
system tests – which tend to run more slowly, and contain
interacting sub-parts. How do we run those sorts of tests?

12 / 94

Test automation Test cases

Testing frameworks

In the last lecture, we saw some example unit tests.
We said that a unit test tests a unit of code (function, method,
class, module) in isolation, and there are a few properties we
would like it to have (e.g. run very quickly).
But there are other sorts of tests as well – integration tests and
system tests – which tend to run more slowly, and contain
interacting sub-parts. How do we run those sorts of tests?

13 / 94

Test automation Test cases

Testing frameworks

Besides the fact that we can use them for unit tests, JUnit and
the other xUnit frameworks are good examples of testing
frameworks, or test automation frameworks.

Amman and Offut define test automation as:

The use of software to control the execution of tests, the
comparison of actual outcomes to predicted outcomes, the
setting up of test preconditions, and other test control and
test reporting functions.

And a test framework as:

A set of assumptions, concepts, and tools that support test
automation.

14 / 94

Test automation Test cases

Testing frameworks

We can see that JUnit supports test automation in multiple ways.

Does it let us control the execution of tests?

Yes, we can run tests (or some subset of them), from the
command line or an IDE

Does it let us compare actual outcomes to predicated outcomes?

Yes, we saw that we can use assertions to compare (for
instance) what we expect to be returned from a method, with
what’s actually returned.

Does it let us set up test preconditions?

Yes, we can write code in the body of a unit test that does this.
(And we will see later that we can often pull common code for
this out into test fixtures.)

15 / 94

Test automation Test cases

Testing frameworks

We can see that JUnit supports test automation in multiple ways.

Does it let us control the execution of tests?
Yes, we can run tests (or some subset of them), from the
command line or an IDE

Does it let us compare actual outcomes to predicated outcomes?

Yes, we saw that we can use assertions to compare (for
instance) what we expect to be returned from a method, with
what’s actually returned.

Does it let us set up test preconditions?

Yes, we can write code in the body of a unit test that does this.
(And we will see later that we can often pull common code for
this out into test fixtures.)

16 / 94

Test automation Test cases

Testing frameworks

We can see that JUnit supports test automation in multiple ways.

Does it let us control the execution of tests?
Yes, we can run tests (or some subset of them), from the
command line or an IDE

Does it let us compare actual outcomes to predicated outcomes?

Yes, we saw that we can use assertions to compare (for
instance) what we expect to be returned from a method, with
what’s actually returned.

Does it let us set up test preconditions?

Yes, we can write code in the body of a unit test that does this.
(And we will see later that we can often pull common code for
this out into test fixtures.)

17 / 94

Test automation Test cases

Testing frameworks

We can see that JUnit supports test automation in multiple ways.

Does it let us control the execution of tests?
Yes, we can run tests (or some subset of them), from the
command line or an IDE

Does it let us compare actual outcomes to predicated outcomes?
Yes, we saw that we can use assertions to compare (for
instance) what we expect to be returned from a method, with
what’s actually returned.

Does it let us set up test preconditions?

Yes, we can write code in the body of a unit test that does this.
(And we will see later that we can often pull common code for
this out into test fixtures.)

18 / 94

Test automation Test cases

Testing frameworks

We can see that JUnit supports test automation in multiple ways.

Does it let us control the execution of tests?
Yes, we can run tests (or some subset of them), from the
command line or an IDE

Does it let us compare actual outcomes to predicated outcomes?
Yes, we saw that we can use assertions to compare (for
instance) what we expect to be returned from a method, with
what’s actually returned.

Does it let us set up test preconditions?

Yes, we can write code in the body of a unit test that does this.
(And we will see later that we can often pull common code for
this out into test fixtures.)

19 / 94

Test automation Test cases

Testing frameworks

We can see that JUnit supports test automation in multiple ways.

Does it let us control the execution of tests?
Yes, we can run tests (or some subset of them), from the
command line or an IDE

Does it let us compare actual outcomes to predicated outcomes?
Yes, we saw that we can use assertions to compare (for
instance) what we expect to be returned from a method, with
what’s actually returned.

Does it let us set up test preconditions?
Yes, we can write code in the body of a unit test that does this.
(And we will see later that we can often pull common code for
this out into test fixtures.)

20 / 94

Test automation Test cases

Testing frameworks

(. . . continued):

Does it provide other test control and reporting functions?
Yes, it provides multiple forms of output, that less us see
whether our tests failed or succeeded.

21 / 94

Test automation Test cases

Testing frameworks

Likewise, Python’s unittest provides similar features:

A structure for writing test drivers
Assertions for testing expected results
Test features for sharing common test data
Test suites for easily organizing and running tests
Graphical and textual test runners

22 / 94

Test automation Test cases

Testing frameworks

But they are just one sort of test automation tool.
Test automation could be something as simple as a script
which, once a day, compiles my team’s project and sends an
email to me if there are compilation errors.
In general, if some sort of testing can be automated – run
without human intervention – then we should do so.
We can imagine for unit tests, that we could have a person
manually running each test and recording the outcome – but
that is slow, subject to human error, and quickly becomes
infeasible.

23 / 94

Test automation Test cases

Testing frameworks

Some sorts of testing and QA activity can’t be automated (. . . yet).

A final system test for (say) a mobile phone might involve
actually setting up and performing tasks with a real phone.
Assessing the usability of an interface typically, how quickly a
user can find and navigate to a particular item, can’t be
automated.

But what we can automate, we do – this helps reduce cost and
improve the reliability of our testing.

The easier tests are to run, the more likely that they will be run,
and the fewer ‘manual handling’ steps, the less chance for error.

24 / 94

Test automation Test cases

Testing frameworks

So, why do test automation?

Reduces cost
Reduces human error
Reduces variance in test quality from different individuals
Significantly reduces the cost of regression testing

25 / 94

Test automation Test cases

Test cases

26 / 94

Test automation Test cases

Components of a Test Case

One thing all testing frameworks do is let us run test cases.
We can think of a test case as the smallest possible ‘unit’ of
testing.
A test case has multiple parts that make it up.
Terminology is not standardised here, we follow the
terminology of Amman and Offutt.

27 / 94

Test automation Test cases

Components of a Test Case

As an example, we’ll consider a Python function
addNumbers(m, n), which should add two numbers.

And we’ll suppose we have a particular test case for it in mind:

Test case 001:
When passed the numbers 3 and 4, addNumbers should return
7.

28 / 94

Test automation Test cases

Components of a Test Case

Components that go to make up a test case:

Test values or test case values.

These are the inputs to the program that we supply.
In this case, the numbers 3 and 4.

Expected results or expected values.

The values we expect to see if the program performs in
accordance with specifications.
In this case, the number 7.

29 / 94

Test automation Test cases

Components of a Test Case

Definitions:

Test values: input values necessary to complete some execution
of the software.
Expected values: result to be produced iff program satisfies
intended behaviour on a test case.

30 / 94

Test automation Test cases

Components of a Test Case

Sometimes, we will need to supply or execute other values or
commands in order to execute a test case.

Prefix values.

Inputs necessary to put the software into the appropriate state
to receive the test case values.

For instance, if addNumbers was actually a method of a class
called Calculator – then before we can execute our test case,
we’ll need to construct an object of type Calculator.

The ‘prefix values’ are all values, commands etc. we supply in
order to construct the Calculator object and get it ready.

31 / 94

Test automation Test cases

Prefix values

‘Prefix values’ can be more complicated than just parameters passed
or code executed. They can include all sorts of setup activity . . .

e.g. Suppose we’re doing performance testing of a web site -
we start a server instances going, and send automated requests
to it to see how it performs.

Then the ‘prefix values’ can be everything needed to prepare
that test – the configuration for the server, the commands to
run it, the configuration of the request-sending program, annd
the commands needed to run it, etc.

32 / 94

Test automation Test cases

Components of a Test Case

A further possible component of a test case:

Postfix values:
Any inputs, values, commands etc that need to be sent to the
software after the test case values have been sent.

Verification Values : Values needed to see the results of the test
case values
Exit Commands : Values needed to terminate the program or
otherwise return it to a stable state

33 / 94

Test automation Test cases

Verification values

For instance, suppose the specification for addNumbers instead said
that, when the function is passed 2 numbers, it should write the
results to a file called “myresult.txt”.

We run our test, and supply the input values 3 and 4. How can we
tell if the test passed or failed?

We will need to send further commands, paramaters etc to find out
what whether the file got written, and what was written to it.

34 / 94

Test automation Test cases

Exit commands

If our software made use of, say, a database – then ‘exit commands’
might include commands needed to restore the database to a
known, stable state.

35 / 94

Test automation Test cases

Test cases in real-world code

Sometimes code that is packaged as a single “test” actually
contains multiple test cases.

e.g.:

def myTest():

for n in range(0, 100):

m = 3

res = addNumbers(m, n)

assertEquals(res, m+n)

How many test cases do we have here?

36 / 94

Test automation Test cases

Test fixtures

One bit of terminology we saw previously is “test fixture”: the
commands/values needed to create test fixtures would all be
examples of prefix values

37 / 94

Test automation Test cases

Testing framework definitions

A few definitions relevant to testing frameworks:

Software Testability

The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to
determine whether those criteria have been met

how hard it is to find faults in the software
Testability is determined by two practical problems

How to provide the test values to the software
How to observe the results of test execution

38 / 94

Test automation Test cases

Testing framework definitions
Observability and Controllability

How easy it is to observe the behavior of a program in terms of its
outputs, effects on the environment and other hardware and
software components

How easy it is to provide a program with the needed inputs, in
terms of values, operations, and behaviors

Observability
Software that affects hardware devices, databases, or remote
files have low observability

Controllability
Easy to control software with inputs from keyboards
Inputs from hardware sensors or distributed software is harder

Some systems are very easy to observe and control, others less
so.

39 / 94

Test automation Test cases

Unit testing frameworks

So, a testing framework is any set of assumptions, tools etc
that assist in executing our test cases.

They can range from the simple (a script that is automatically
run, and emails us with a result) to the complex (like the JUnit
and unittest frameworks).

Unit testing frameworks are frameworks that just happen to be
primarily intended for running unit tests.

They have that goal in mind, and thus tend to provide facilities
for testing a unit code in isolation (e.g. the ability to ‘mock’
databases or other external systems, that we saw last lecture).

40 / 94

Test automation Test cases

Unit testing frameworks

We can actually use JUnit or unittest to test

interaction between several methods
interaction between several objects
setting up several systems/subsystems, and testing interaction
between them.

The framework may not always provide good support for the
sort of things we’re doing, as it was set up with a different
purpose in mind.
But we can still use its general features (e.g. report output)
regardless.
We should probably separate these non-unit tests out from our
unit tests, though, and document what their purpose is.

41 / 94

Test automation Test cases

Unit testing frameworks

We can actually use JUnit or unittest to test
interaction between several methods

interaction between several objects
setting up several systems/subsystems, and testing interaction
between them.

The framework may not always provide good support for the
sort of things we’re doing, as it was set up with a different
purpose in mind.
But we can still use its general features (e.g. report output)
regardless.
We should probably separate these non-unit tests out from our
unit tests, though, and document what their purpose is.

42 / 94

Test automation Test cases

Unit testing frameworks

We can actually use JUnit or unittest to test
interaction between several methods
interaction between several objects

setting up several systems/subsystems, and testing interaction
between them.

The framework may not always provide good support for the
sort of things we’re doing, as it was set up with a different
purpose in mind.
But we can still use its general features (e.g. report output)
regardless.
We should probably separate these non-unit tests out from our
unit tests, though, and document what their purpose is.

43 / 94

Test automation Test cases

Unit testing frameworks

We can actually use JUnit or unittest to test
interaction between several methods
interaction between several objects
setting up several systems/subsystems, and testing interaction
between them.

The framework may not always provide good support for the
sort of things we’re doing, as it was set up with a different
purpose in mind.
But we can still use its general features (e.g. report output)
regardless.
We should probably separate these non-unit tests out from our
unit tests, though, and document what their purpose is.

44 / 94

Test automation Test cases

Unit testing frameworks

We can actually use JUnit or unittest to test
interaction between several methods
interaction between several objects
setting up several systems/subsystems, and testing interaction
between them.

The framework may not always provide good support for the
sort of things we’re doing, as it was set up with a different
purpose in mind.

But we can still use its general features (e.g. report output)
regardless.
We should probably separate these non-unit tests out from our
unit tests, though, and document what their purpose is.

45 / 94

Test automation Test cases

Unit testing frameworks

We can actually use JUnit or unittest to test
interaction between several methods
interaction between several objects
setting up several systems/subsystems, and testing interaction
between them.

The framework may not always provide good support for the
sort of things we’re doing, as it was set up with a different
purpose in mind.
But we can still use its general features (e.g. report output)
regardless.

We should probably separate these non-unit tests out from our
unit tests, though, and document what their purpose is.

46 / 94

Test automation Test cases

Unit testing frameworks

We can actually use JUnit or unittest to test
interaction between several methods
interaction between several objects
setting up several systems/subsystems, and testing interaction
between them.

The framework may not always provide good support for the
sort of things we’re doing, as it was set up with a different
purpose in mind.
But we can still use its general features (e.g. report output)
regardless.
We should probably separate these non-unit tests out from our
unit tests, though, and document what their purpose is.

47 / 94

Test automation Test cases

unittest

The standard python module helps you write unit tests:

import unittest

from my_script import is_palindrome

class KnownInput(unittest.TestCase):

knownValues = (('lego', False),('radar', True))

def testKnownValues(self):

for word, palin in self.knownValues:

result = is_palindrome(word)

self.assertEqual(result, palin)

48 / 94

Test automation Test cases

Test fixtures

Recall that test fixtures are things we need in order to get the
system into a known state, ready for a test
Often, multiple tests will share some requirements for what
environment needs to be set up
A typical approach in object-oriented languages is to group
tests with shared fixture requirements into the same class
And then to specify “setup” and “tear-down” methods for the
class, which will be run before and after each test, respectively.
Shared objects will be declared as instance variables

49 / 94

Test automation Test cases

Test fixtures
class TestArithmeticOperations {
Calculator myCalculator;

@Override // This is run before each test method
protected void setUp() throws Exception {
System.out.println("Setting things up!");
myCalculator = new Calculator();

}

@Override // This is run after each test method
protected void tearDown() throws Exception {
System.out.println("Running tearDown");
myCalculator = null;
assertNull(myCalculator);

}

@Test
void test1() {
// ...

50 / 94

Test automation Test cases

Fixtures in Python
import unittest

class FixturesTest(unittest.TestCase):
def setUp(self):

print('In setUp()')
self.fixture = range(1, 10)

def tearDown(self):
print('In tearDown()')
del self.fixture

def test(self):
print('in test()')
self.assertEqual(self.fixture, range(1, 10))

if __name__ == '__main__':
unittest.main()

51 / 94

Test automation Test cases

Some assertion methods

Common assertions
assertTrue(x, msg=None)
assertFalse(x, msg=None)
assertIsNone(x, msg=None)
assertIsNotNone(x, msg=None)
assertEqual(a, b, msg=None)
assertNotEqual(a, b, msg=None)
assertIs(a, b, msg=None)
assertIsNot(a, b, msg=None)
assertIn(a, b, msg=None)
assertNotIn(a, b, msg=None)
assertIsInstance(a, b, msg=None)
assertNotIsInstance(a, b, msg=None)

52 / 94

Test automation Test cases

More assertion methods

Other assertions
assertAlmostEqual(a, b, places=7, msg=None, delta=None)
assertNotAlmostEqual(a, b, places=7, msg=None, delta=None)
assertGreater(a, b, msg=None)
assertGreaterEqual(a, b, msg=None)
assertLess(a, b, msg=None)
assertLessEqual(a, b, msg=None)
assertRegex(text, regexp, msg=None)
assertNotRegex(text, regexp, msg=None)
assertCountEqual(a, b, msg=None)
assertMultiLineEqual(a, b, msg=None)
assertSequenceEqual(a, b, msg=None)
assertListEqual(a, b, msg=None)
assertTupleEqual(a, b, msg=None)
assertDictEqual(a, b, msg=None)

53 / 94

Test automation Test cases

Running Tests

Given the script test_simple.py:

import unittest

class SimplisticTest(unittest.TestCase):

def test(self):

self.assertTrue(True)

if __name__ == '__main__':

unittest.main()

54 / 94

Test automation Test cases

Running Tests

Run it with python3 test_simple.py:

$ python3 test_simple.py

.

--

Ran 1 test in 0.000s

OK

55 / 94

Test automation Test cases

Structuring test code
As with any software system, we want to factor out common
code –
an example:

knownValues = (('lego', False),('radar', True)

...

for word, palin in self.knownValues:

result = is_palindrome(word)

self.assertEqual(result, palin)

Follow the “DRY” principle - Do not Repeat Yourself

Question: what constitutes a “test case”, in this code?

This style of test is sometimes called a “data-driven unit test”
56 / 94

Test automation Test cases

Data-driven unit tests

Problem: Testing a function multiple times with similar values
How to avoid test code bloat?

Simple example: Adding two numbers
Adding a given pair of numbers is just like adding any other pair
You really only want to write one test

Data-driven unit tests call constructor for each logical set of
data values

Same tests are then run on each set of data values

57 / 94

Test automation Test cases

Structuring test code

More broadly, how test cases are structured will depend
somewhat on the conventions of the language and the
framework being used.

in Java, typical to put source code in a directory called “src”,
and have a separate directory (e.g “test”) for unit tests, with
structure mirroring the main code.
in Python, most tests are put into a separate module.

58 / 94

Test automation Test cases

Doubles

Actors use doubles to replace them during certain scenes
Dangerous or athletic scenes
Skills the actor doesn’t have, like dancing or singing

Test doubles replace software components that cannot be used
during testing

59 / 94

Test automation Test cases

Reasons for Test Doubles

Component has not been written
The real component does something destructive that we want
to avoid during testing (unrecoverable actions)
The real component interacts with an unreliable resource
The real component runs very slowly
The real component creates a test cycle

A depends on B, B depends on C, C depends on A

A test double is a software component that implements partial
functionality to be used during testing

60 / 94

Test automation Test cases

Dependencies

Very often, a class or function is not designed to work on its
own, but in combination with other classes or functions -

e.g. an AddressBook class may make use of a Contact class

or with other subsystems, or external systems:
dependency on a database for an HR system
dependency on a network, for an Internet chat system
dependency on particular hardware devices

How do we deal with these?

61 / 94

Test automation Test cases

Mocks, stubs and more

Often, we’ll use objects or function that mimic other ones for
testing purposes. There does not seem to be any universally
accepted term for these, but one author [Gerard Meszaros] uses
the generic term “Test Double”.

Specific sorts of Test Double -
Dummy objects
Fake objects
Stubs
Spies
Mocks

[Fowler, in e.g. “Mocks Aren’t Stubs”, uses Meszaros’s terminology.]

62 / 94

Test automation Test cases

Dummy objects

These are objects that are passed around but not used – for
instance, they may be used to fill parameter lists (in statically
typed languages).

In languages with a null, Nil or undefined value, we might
be able to use that value
(which also serves to document the fact that we don’t care
what it is)

63 / 94

Test automation Test cases

Fake objects

Fake objects actually do have working implementations, but for
some reason are not suitable for production

An example of this is when we use an in-memory database,
instead of an on-disk database

64 / 94

Test automation Test cases

Stubs

Stubs (often, “stub methods”) provide canned answers to calls
made during the test –
i.e., the answers are usually fixed, and don’t change in response
to the parameters passed

65 / 94

Test automation Test cases

Spies

These are stubs that record information on how they were
called.
These are particularly useful for testing code that calls (e.g.)
an object representing a server, such as a mail server, or which
writes to a file-like object.

66 / 94

Test automation Test cases

Spies – example

In Java, we often write to files (or network sockets) using
classes like BufferedWriter

If we want to verify, in some unit test, what is written, we
could use a “Spy” class that implements the java.io.Writer

class – but instead of writing to a file, it records whatever data
would have been written
In Python, we do not have static types, and any class with a
“write()” method suffices.
Making our code agnostic about what sort of thing it is writing
to has the benefit that if we do decide to change it at a later
date, we don’t have to revise our tests

67 / 94

Test automation Test cases

Mocks

Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

Unlike the other types of test double, mock objects can verify
things about the behaviour of a class.

For instance:

Suppose our code uses a database; we know that to work
correctly, it must call the connect() method of a database
object, and can then call the query() method;
but it is an error to call query() before connect().
Our mock object can contain code that checks whether
query() has been called before connect().

68 / 94

Test automation Test cases

Mocks

Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

Unlike the other types of test double, mock objects can verify
things about the behaviour of a class.

For instance:

Suppose our code uses a database; we know that to work
correctly, it must call the connect() method of a database
object, and can then call the query() method;
but it is an error to call query() before connect().
Our mock object can contain code that checks whether
query() has been called before connect().

69 / 94

Test automation Test cases

Mocks

Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

Unlike the other types of test double, mock objects can verify
things about the behaviour of a class.

For instance:

Suppose our code uses a database; we know that to work
correctly, it must call the connect() method of a database
object, and can then call the query() method;
but it is an error to call query() before connect().
Our mock object can contain code that checks whether
query() has been called before connect().

70 / 94

Test automation Test cases

Mocks

Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

Unlike the other types of test double, mock objects can verify
things about the behaviour of a class.

For instance:
Suppose our code uses a database; we know that to work
correctly, it must call the connect() method of a database
object, and can then call the query() method;
but it is an error to call query() before connect().

Our mock object can contain code that checks whether
query() has been called before connect().

71 / 94

Test automation Test cases

Mocks

Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

Unlike the other types of test double, mock objects can verify
things about the behaviour of a class.

For instance:
Suppose our code uses a database; we know that to work
correctly, it must call the connect() method of a database
object, and can then call the query() method;
but it is an error to call query() before connect().
Our mock object can contain code that checks whether
query() has been called before connect().

72 / 94

Test automation Test cases

Mocks – another example

We might have a order fulfilment system that is supposed to
send an email when (for some reason) an order can’t be
fulfilled.
The class that handles sending emails may need particular
methods to be called, in a particular order;
we can write a mock that tests that they are called in the right
way.

73 / 94

Test automation Test cases

Mocks in Python

Python has the standard library unittest.mock

MagicMock() lets us create methods that return specific
results, or expect to be called a particular way, on the fly.

> from unittest.mock import *
> mock = MagicMock()

74 / 94

Test automation Test cases

Mocks in Python (2)

Once we have called our mock() object, the fact that it has
been called is recorded.
We then (before the test ends) assert what we expect to have
happened
(e.g. that the method was called)
If not, then an exception will be raised.
Much more complex behaviour can be created – check the API
for details.

75 / 94

Test automation Test cases

Testable documentation

We have said that sometimes, tests are the best documentation
of an API (since documentation often gets out of date)
Testable documentation frameworks ensure that documentation
is kept up to date with code – tests are generated from the
documentation of an API.
One example, from the Python language, is the doctest

library.
A good API will often give examples of how methods are
functions should be called, and the Python doctest module
allows these examples to be extracted and run as tests.

76 / 94

Test automation Test cases

Testable documentation vs unit testing

The purpose of these is to ensure that the documentation
examples are still correct.
This is not the same as unit testing – doctests will usually only
exercise a small number of examples, and are not nearly as
thorough as unit tests should be.

77 / 94

Test automation Test cases

Doctest example

def square(x):

"""Return the square of x.

>>> square(2)

4

>>> square(-2)

4

"""

return x * x

if __name__ == '__main__':

import doctest

doctest.testmod()

78 / 94

Test automation Test cases

Doctest in other languages

Like xUnit, doctest has been ported to a great many other
languages.
(An encouraging feature of testing techniques is that they tend
to be widely adopted if they work well.)

Java has JDoctest
Haskell has a package simply called doctest
Ruby has rdoctest

79 / 94

Test automation Test cases

Doctest in other languages

Like xUnit, doctest has been ported to a great many other
languages.
(An encouraging feature of testing techniques is that they tend
to be widely adopted if they work well.)

Java has JDoctest

Haskell has a package simply called doctest
Ruby has rdoctest

80 / 94

Test automation Test cases

Doctest in other languages

Like xUnit, doctest has been ported to a great many other
languages.
(An encouraging feature of testing techniques is that they tend
to be widely adopted if they work well.)

Java has JDoctest
Haskell has a package simply called doctest

Ruby has rdoctest

81 / 94

Test automation Test cases

Doctest in other languages

Like xUnit, doctest has been ported to a great many other
languages.
(An encouraging feature of testing techniques is that they tend
to be widely adopted if they work well.)

Java has JDoctest
Haskell has a package simply called doctest
Ruby has rdoctest

82 / 94

Test automation Test cases

Property-based testing

This sort of testing originates from the Haskell testing
framework QuickCheck, and is sometimes called generative
testing

Our tests are of the form:

for all data or parameters that are generated in a particular way,
the function or method should produce the following results.

83 / 94

Test automation Test cases

Property-based testing

This sort of testing originates from the Haskell testing
framework QuickCheck, and is sometimes called generative
testing

Our tests are of the form:

for all data or parameters that are generated in a particular way,
the function or method should produce the following results.

84 / 94

Test automation Test cases

Simple example

The “tail” function, applied to a list, returns everything but the
first element –
what invariants hold?

We know that if tail is called on a non-empty list, the length of
the result is one less than the length of the list passed in.

85 / 94

Test automation Test cases

Simple example

The “tail” function, applied to a list, returns everything but the
first element –
what invariants hold?
We know that if tail is called on a non-empty list, the length of
the result is one less than the length of the list passed in.

86 / 94

Test automation Test cases

Use for interfaces and sub-classes

This can be particularly useful when testing interfaces and
subclasses

Our documentation states that all subclasses of a class should
maintain some invariant;
the property-based test checks whether it can find
counterexamples.

87 / 94

Test automation Test cases

Use for interfaces and sub-classes

This can be particularly useful when testing interfaces and
subclasses
Our documentation states that all subclasses of a class should
maintain some invariant;
the property-based test checks whether it can find
counterexamples.

88 / 94

Test automation Test cases

Summary of test types so far

Unit tests provide a way of identifying ways in which a software
component deviates from its specification.

Test doubles provide a way of testing a unit of code, even when it
depends on other code.

Testable documentation provides a way of testing examples written
in the documentation for a system, and making sure they still hold.

Property-based testing provides a way of finding counterexamples to
any invariants we think should hold about a software component.

89 / 94

Test automation Test cases

A wrinkle – user expectations

In some cases, software may perform according to its
specification, but still violate user expectations.
For instance, users may expect a GUI system or mobile app to
conform with the behaviour of familiar applications -
or may expect that a system will not do something (e.g.,
transmit their data to a third party)
These are not faults, per se – but they can be just as important
for software quality.

90 / 94

Test automation Test cases

Testing as a way of improving reliability

Testing is one way of improving the reliability of a system. It
aims to detect faults that have already found their way into a
system.

In general, techniques for improving reliability fall into three
categories:

Fault avoidance – try to prevent faults from ever being
introduced into the system
Fault detection – try to detect faults that have found their way
into the system
Fault tolerance – incorporate ways of recovering from faults in
the system at runtime.

91 / 94

Test automation Test cases

Examples of improving reliability

Fault avoidance – we can try to avoid introducing faults by our
use of particular development methodologies, by statically
analysing the system design, and through the use of formal
methods.
Fault detection – we can try to detect failures, and use
debugging and testing to identify the causes (the faults) that
result in those failures.
Fault tolerance – we can introduce redundancy into the system.
For instance, the Airbus flight control system actually contains
multiple systems, and control switches to a backup if one
becomes unavailable.
(Query – what sort of faults will this guard against? What sort
might it not?)

92 / 94

Test automation Test cases

Test Double Illustration

System

Instantiate to test Use
Calls

Double of

dependency

component

Dependency

component

Software

component

 under test

JUnit

test

93 / 94

Test automation Test cases

Next

Next question - what test values to use, what test cases to
write?
This is test design . . .

94 / 94

	Test automation
	Test cases

