
CITS5501 Software Testing and Quality
Assurance

Introduction to testing; unit testing

Unit coordinator: Arran Stewart

1 / 70

Highlights

Documenting code
APIs
unit testing
testable documentation
property-based testing

2 / 70

Highlights

Documentation and APIs: how do we work out what the
correct behaviour of a piece of software is so that we can test
it?
Unit testing: What is unit testing, what is the terminology, and
how do we write unit tests?

3 / 70

Recap – faults, failures and errors

Failure is any deviation of the observed behaviour from the
specification
An erroneous state (also called an error) means that the system
is in such a state that further processing by the system will lead
to a failure (i.e., the system deviating from intended behaviour)
A fault (sometimes “defect” or “bug”) is the mechanical or
algorithmic cause of the erroneous state.

4 / 70

Reliability

The reliability of a system is the degree to which its observed
behaviour conforms to its specification.

5 / 70

What sorts of things can we test?

We can classify tests by the “level” of component or system they
work with:

We can test a single procedure, method or function – this is
called unit testing. A unit just means a component of code –
typically a small one, but sometimes the term is used to refer
to modules (collections of definitions).
We can test how units, classes, modules or other components
of a system work together – this is called integration testing
We can test an entire system – this is called system testing

6 / 70

What sorts of things can we test?

We can also classify them by the purpose of the test, or when in the
software development lifecycle the testing activity occurs:

After making a change to some component (an enhancement,
or bug fix, or re-factoring): we can check whether it still passes
all relevant tests. This is called regression testing.
On delivery of a system: we can ‘test’ whether a system meets
a customer’s expectations – this is called acceptance testing

7 / 70

Testing

We can define testing as the systematic attempt to find faults
in an implemented system.
Testing requires a different mind-set from construction: when
constructing (or designing) software, we usually focus on what
it will do when things go right;
when testing, we focus on finding faults – occasions when
things do wrong.
Programmers do often refer to tests as “failing” – but when a
test indicates a bug, that’s actually example of it succeeding in
its purpose (i.e., showing the presence of a fault)

8 / 70

Unit testing and unit specifications

We’ll start by looking at the “lowest” level of tests, unit tests.

When we test a unit of code, we aim to ensure it meets its
specifications.
If we don’t have any specifications for it, that obviously makes
life difficult.

So in general, we aim to document the intended behaviour of
any externally available unit.

(Some units might be purely internal – “private”, for instance,
in Java – it is usually good practice to document those as well,
if we’re going to test them – else how will we know what to
test for?)

9 / 70

Documenting code

Documenting code

10 / 70

Documenting code

Documenting units

Most modern languages provide some way of documenting the
specification of units inline (that is, in the body of the code,
rather than in a separate reference manual) and extracting that
documentation for use by developers.

For instance:
Java provides the Javadoc tool
Python provides the Pydoc tool

For languages which do not have such a tool, applications such
as Doxygen allow units to be documented and the
documentation extracted.

11 / 70

http://www.doxygen.nl/

Documenting code

Javadoc example

Consider the task of finding the position of the first occurrence of
some character in a string.

In Java, the String.indexOf() method will do this for us.

Its signature is:
int indexOf(int ch)

That is, it takes an int and returns an int. (Why not a char? For
historical reasons we won’t get into.)

12 / 70

Documenting code

Javadoc example, cont’d
If we look up the Java documentation for the indexOf method, we
will get the following information:

Returns the index within this string of the first occurrence of the
specified character. If a character with value ch occurs in the character
sequence represented by this String object, then the index (in Unicode
code units) of the first such occurrence is returned. For values of ch
in the range from 0 to 0xFFFF (inclusive), this is the smallest value k
such that:
this.charAt(k) == ch
is true. For other values of ch, it is the smallest value k such that:
this.codePointAt(k) == ch is true. In either case, if no such char-
acter occurs in this string, then -1 is returned.
Parameters:
ch - a character (Unicode code point).
Returns:
the index of the first occurrence of the character in the character
sequence represented by this object, or -1 if the character does not
occur.

13 / 70

Documenting code

Javadoc example, cont’d

Key points from the Javadoc documentation:

When we call someString.indexOf(ch):

If ch is not in someString, the method returns -1

If ch is in someString, the method returns “the smallest value
k such that > this.codePointAt(k) == ch”

(Or: “The first position in someString where the character ch
appears.” Which of the two is easier to understand? Which is
easier to write a test for?)

(Are there any other possibilities not covered by the
documentation?)

14 / 70

Documenting code

Javadoc example, cont’d

Key points from the Javadoc documentation:

When we call someString.indexOf(ch):

If ch is not in someString, the method returns -1

If ch is in someString, the method returns “the smallest value
k such that > this.codePointAt(k) == ch”

(Or: “The first position in someString where the character ch
appears.” Which of the two is easier to understand? Which is
easier to write a test for?)

(Are there any other possibilities not covered by the
documentation?)

15 / 70

Documenting code

Javadoc example, cont’d

The documentation for the indexOf method is produced from a
specially written comment which looks something like this:
/**
* Returns the index within this string of the first occurrence of the

* specified character. If a character with value ch occurs in the

* character sequence represented by this String object, then the

* index (in Unicode code units) of the first such occurrence is

* returned. For values of ch in the range from 0 to 0xFFFF

* (inclusive), this is the smallest value <i>k</i> such that:

* this.charAt(<i>k</i>) == ch

* is true. For other values of ch, it is the

* smallest value <i>k</i> such that:

* this.codePointAt(<i>k</i>) == ch

* is true. In either case, if no such character occurs in this

* string, then -1 is returned.

*
* @param ch a character (Unicode code point).

* @return the index of the first occurrence of the character in the

* character sequence represented by this object, or

* -1 if the character does not occur.

*/

16 / 70

Documenting code

Javadoc conventions

The Javadoc comment is normally placed just before the method it
documents, and begins with a double asterisk (“/**”)

It describes what the method does, what parameters should be
passed in, and what result will be returned.
It uses the @param markup to describe each parameter.
It uses the @return markup to describe the return value.

17 / 70

Documenting code

Pydoc
In Python, the nearest equivalent method to Java’s indexOf would
be String.index, which searches for a substring within another
string.

It does not actually have Pydoc documentation, but if it did, it
would look like this:

...

def index(self, substr):
"""
Returns the index of the first occurrence of substr in
the string.

If substr does not occur within the string, raises a
ValueError exception.
"""
...

18 / 70

Documenting code

Pydoc

Points to note:

Instead of returning -1 when the string does not occur, Python
throws an exception.
In Python, this is a typical idiom: exceptions are often thrown
to indicate the absence of something.
More on exceptions later.

19 / 70

Documenting code

Python docstrings

The Pydoc tool makes use of Python docstrings.
If the first expression within a module, class, function or
method is a string, then that is used as the docstring for that
module (or class or function or method).
Unlike Javadoc, Pydoc does not have special markup for
documenting parameters or return values – but more
comprehensive documentation tools exist (the chief one being
Sphinx) which do.

20 / 70

http://www.sphinx-doc.org/

Documenting code

Documenting a Python function

So you can document a function by making the first expression
in the function a string:
...

def myFunction(myArg):
"""
This function frobnicates the argument "myArg"
"""
...

21 / 70

Documenting code

Documenting a Python class

And you can document a class by making the first expression in
the class a string:
...
class MyClass:

"The MyClass class provides a frobnication service"

...

Similarly for Python modules.

22 / 70

Documenting code

APIs

The specification for all the externally accessible classes,
methods and so on in a module make up what is called the
API1 of the module – the “Application Programming Interface”.

The name derives from the idea that if we write a re-usable
component of some sort (like a library), then other developers
will want to use this in their application programming, and we
should document the public interface to that component.
(Actually, the other developers might not be writing an
application per se – they might be writing another library – but
the name has stuck.)

1See further “Who invented the API?”,
https://nordicapis.com/who-invented-the-api/

23 / 70

https://nordicapis.com/who-invented-the-api/

Documenting code

APIs

The specification for all the externally accessible classes,
methods and so on in a module make up what is called the
API1 of the module – the “Application Programming Interface”.
The name derives from the idea that if we write a re-usable
component of some sort (like a library), then other developers
will want to use this in their application programming, and we
should document the public interface to that component.

(Actually, the other developers might not be writing an
application per se – they might be writing another library – but
the name has stuck.)

1See further “Who invented the API?”,
https://nordicapis.com/who-invented-the-api/

24 / 70

https://nordicapis.com/who-invented-the-api/

Documenting code

APIs

The specification for all the externally accessible classes,
methods and so on in a module make up what is called the
API1 of the module – the “Application Programming Interface”.
The name derives from the idea that if we write a re-usable
component of some sort (like a library), then other developers
will want to use this in their application programming, and we
should document the public interface to that component.
(Actually, the other developers might not be writing an
application per se – they might be writing another library – but
the name has stuck.)

1See further “Who invented the API?”,
https://nordicapis.com/who-invented-the-api/

25 / 70

https://nordicapis.com/who-invented-the-api/

Documenting code

APIs as contracts

We can think of the API for a function (or other procedural
unit) as constituting a contract between the developer of the
function, and the client code using it.2
In effect, the documentation says “If you, the client code, pass
me arguments which meet the following criteria, I promise to
do the following thing: . . . ”

2See further “Design by contract”,
https://en.wikipedia.org/wiki/Design_by_contract; Meyer, Bertrand. “Applying
‘design by contract’.” Computer 25.10 (1992): 40-51.

26 / 70

https://en.wikipedia.org/wiki/Design_by_contract
http://teaching.csse.uwa.edu.au/units/CITS5501/papers/contract.pdf
http://teaching.csse.uwa.edu.au/units/CITS5501/papers/contract.pdf

Documenting code

APIs, cont’d

The “following thing” – the behaviour of the function – will
usually be to return some sort of value, or to cause some sort
of “side effect”.
(A side effect is anything the function does to alter the current
or subsequent behaviour of the system or its interaction with
external systems, other than returning a value.
For example, writing a file to disk, or sending an email, or
changing the value of a global variable.)

27 / 70

Documenting code

API example

If you have used Java, you most likely at some point will have
written something like
System.out.println("some string ...")

What does the println method promise to do?

The Javadoc says:

void println(String x)

Prints a String and then terminate the line.

Does println() return a value? If not, then what does it
promise to do?

28 / 70

Documenting code

API example

If you have used Java, you most likely at some point will have
written something like
System.out.println("some string ...")

What does the println method promise to do?

The Javadoc says:

void println(String x)

Prints a String and then terminate the line.

Does println() return a value? If not, then what does it
promise to do?

29 / 70

Documenting code

API example

If you have used Java, you most likely at some point will have
written something like
System.out.println("some string ...")

What does the println method promise to do?

The Javadoc says:

void println(String x)

Prints a String and then terminate the line.

Does println() return a value? If not, then what does it
promise to do?

30 / 70

Documenting code

API example

If you have used Java, you most likely at some point will have
written something like
System.out.println("some string ...")

What does the println method promise to do?

The Javadoc says:

void println(String x)

Prints a String and then terminate the line.

Does println() return a value? If not, then what does it
promise to do?

31 / 70

Documenting code

API example

If you have used Java, you most likely at some point will have
written something like
System.out.println("some string ...")

What does the println method promise to do?

The Javadoc says:

void println(String x)

Prints a String and then terminate the line.

Does println() return a value? If not, then what does it
promise to do?

32 / 70

Documenting code

APIs – specification vs implementation

The API documentation does not normally say how the function is
to be implemented – just what its return value and effects are.

This means that if the library developer decides to reimplement the
function in another way (for instance, to improve efficiency), they
can, without changing the API.

33 / 70

Documenting code

Specification vs implementation example

In fact, you can have multiple implementations of the same API by
different developers.

Example:

Oracle corporation provides an implementation of the Java
standard libraries (as well as of the Java compiler, javac, and
the Java Virtual Machine or JVM).
But there are other implementations – for instance, OpenJDK,
an open-source version of the standard libraries.
These adhere to exactly the same specifications as the Oracle
versions.
(In fact, since Java version 7, the OpenJDK version has been
the reference implementation

34 / 70

https://en.wikipedia.org/wiki/Reference_implementation

Documenting code

Specification vs implementation – other examples

The POSIX standard specifies an API for Unix-like systems,
and has been implemented multiple times in different ways by
different operating systems. (In fact, even Windows, at various
times, has met the POSIX standards.)

35 / 70

Documenting code

Specification vs implementation in Java

Q. In Java, does the API tell us how String.indexOf(ch) is
implemented? How would you implement it?

A. It does not. The plausible way to do it is to test each
possible index from 0 to (length-of-string - 1), see if matches
the character we’re looking for, and if it does, return the index
we’re currently at.
But there’s nothing in the specification to stop us from
implementing it in other ways . . .
e.g. Generate a random number from 0 to (length-of-string -
1), call it k. Check and see if we’ve hit all positions from 0 to
k − 1 yet; if we have, and inputString.charAt(k) equals the
character we’re after, return the current index.3

3See also Bogosort, https://en.wikipedia.org/wiki/Bogosort

36 / 70

https://en.wikipedia.org/wiki/Bogosort

Documenting code

Specification vs implementation in Java

Q. In Java, does the API tell us how String.indexOf(ch) is
implemented? How would you implement it?
A. It does not. The plausible way to do it is to test each
possible index from 0 to (length-of-string - 1), see if matches
the character we’re looking for, and if it does, return the index
we’re currently at.

But there’s nothing in the specification to stop us from
implementing it in other ways . . .
e.g. Generate a random number from 0 to (length-of-string -
1), call it k. Check and see if we’ve hit all positions from 0 to
k − 1 yet; if we have, and inputString.charAt(k) equals the
character we’re after, return the current index.3

3See also Bogosort, https://en.wikipedia.org/wiki/Bogosort

37 / 70

https://en.wikipedia.org/wiki/Bogosort

Documenting code

Specification vs implementation in Java

Q. In Java, does the API tell us how String.indexOf(ch) is
implemented? How would you implement it?
A. It does not. The plausible way to do it is to test each
possible index from 0 to (length-of-string - 1), see if matches
the character we’re looking for, and if it does, return the index
we’re currently at.
But there’s nothing in the specification to stop us from
implementing it in other ways . . .

e.g. Generate a random number from 0 to (length-of-string -
1), call it k. Check and see if we’ve hit all positions from 0 to
k − 1 yet; if we have, and inputString.charAt(k) equals the
character we’re after, return the current index.3

3See also Bogosort, https://en.wikipedia.org/wiki/Bogosort

38 / 70

https://en.wikipedia.org/wiki/Bogosort

Documenting code

Specification vs implementation in Java

Q. In Java, does the API tell us how String.indexOf(ch) is
implemented? How would you implement it?
A. It does not. The plausible way to do it is to test each
possible index from 0 to (length-of-string - 1), see if matches
the character we’re looking for, and if it does, return the index
we’re currently at.
But there’s nothing in the specification to stop us from
implementing it in other ways . . .
e.g. Generate a random number from 0 to (length-of-string -
1), call it k. Check and see if we’ve hit all positions from 0 to
k − 1 yet; if we have, and inputString.charAt(k) equals the
character we’re after, return the current index.3

3See also Bogosort, https://en.wikipedia.org/wiki/Bogosort
39 / 70

https://en.wikipedia.org/wiki/Bogosort

Documenting code

Specification vs implementation – “illities”

Sometimes specifications for units will describe not just what the
unit returns or does, but how it does it.

For instance, if we implement String.indexOf(ch) in the
“generate a random number” way we described, it would be
extremely slow.

40 / 70

Documenting code

Specification vs implementation – “illities”

The specification of String.indexOf(ch) could rule out “silly”
implementations like this, by saying something like “the indexOf

method shall provide guaranteed O(n) time cost, where n is the
length of the string”.

(If you have not done a data structures and algorithms course, don’t
worry too much about what “O(n)” means – it roughly means that
the time to execute indexOf will increase in proportion to the
length of the string.)

41 / 70

Documenting code

Specification vs implementation – “illities”

If you look at the documentation for Java’s TreeMap class, in fact,
you will see that the implementation provided by Oracle promises to
provide guarantees about how long particular methods will take to
run:

This implementation provides guaranteed log(n) time cost
for the containsKey, get, put and remove operations.
Algorithms are adaptations of those in Cormen, Leiserson,
and Rivest’s Introduction to Algorithms.

42 / 70

https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

Documenting code

APIs, summary

So:

The API describes the expected behaviour of a module (or
larger system).
The code constitutes a particular implementation of that API.

43 / 70

Documenting code

APIs, cont’d

What should go in the API documentation?

The preconditions – any conditions which should be satisfied by
the parameters or the system state when the function is called.
The postconditions – the return value of the function, and any
changes the function makes to the system state (the “side
effects” discussed earlier)

We often also will document what will happen if the preconditions
aren’t satisfied: in many languages, this will typically be an
exception being thrown.

44 / 70

Documenting code

APIs, cont’d

Once we know the preconditions and postconditions for a function,
we can write tests for it.

(They needn’t be spelled out formally or mathematically – but it is
best if they are clear, consistent and unambiguous.)

45 / 70

Unit tests

Unit tests

46 / 70

Unit tests

Unit tests

Unit tests should focus on one tiny bit of functionality, and attempt
to find any deviations from expected behaviour.

47 / 70

Unit tests

Desirable properties of unit tests

Ideally, unit tests should be -

quick to run. We want developers to run tests whenever
changes are made to the code, or at least when they are
committed to version control.

independent of other tests. Tests should not rely on other,
particular tests having been run before them.

run frequently. We want to identify faults as early as possible!
Most version control systems make it possible to perform
particular tasks whenever code is committed, using “hooks”
It’s therefore possible to run tests every time code is committed.
(But if tests aren’t quick to run, developers may avoid
committing code regularly.)

48 / 70

Unit tests

JUnit and xUnit

One of the best-known unit-testing frameworks is JUnit.

JUnit derives from a similar framework developed for Smalltalk
by Kent Beck, named SUnit.
The same general framework has been implemented in a huge
array of other languages:

49 / 70

Unit tests

JUnit and xUnit

One of the best-known unit-testing frameworks is JUnit.
JUnit derives from a similar framework developed for Smalltalk
by Kent Beck, named SUnit.

The same general framework has been implemented in a huge
array of other languages:

50 / 70

Unit tests

JUnit and xUnit

One of the best-known unit-testing frameworks is JUnit.
JUnit derives from a similar framework developed for Smalltalk
by Kent Beck, named SUnit.
The same general framework has been implemented in a huge
array of other languages:

51 / 70

Unit tests

JUnit and xUnit

One of the best-known unit-testing frameworks is JUnit.

JUnit derives from a similar framework developed for Smalltalk
by Kent Beck, named SUnit.

The same general framework has been implemented in a huge
array of other languages:

C# (e.g. NUnit)
Python (e.g. unittest, sometimes called “PyUnit”)
Go (go2xunit)
Haskell (e.g. HUnit)
Lua (e.g. LuaUnit)

Collectively, these frameworks are sometimes referred to as
“xUnit”

52 / 70

Unit tests

Unit testing – Java example

import static org.junit.Assert.assertEquals;

import org.junit.Test;

// ...

public class CalculatorTest {

@Test

public void evaluatesExpression() {

Calculator calculator = new Calculator();

int sum = calculator.evaluate("1+2+3");

assertEquals(6, sum);

}

}

53 / 70

Unit tests

Unit testing – Java example

In Java, methods which are intended to be run as tests are
labelled with the annotation org.junit.Test.
The test framework can then be used to run a test.
e.g.

$ java -cp .:junit-4.01.jar org.junit.runner.JUnitCore

CalculatorTest

54 / 70

Unit tests

Unit testing – Python example

Using unittest, classes containing tests inherit from
unittest.TestCase, and methods constituting tests begin
with the letters “test”:

import unittest

def fun(x):

return x + 1

class MyTest(unittest.TestCase):

def test(self):

self.assertEqual(fun(3), 4)

55 / 70

Unit tests

Unit-testing terminology

test case – the basic unit of testing, which checks the
behaviour of code in response to a particular set of inputs.
It consists of one particular set of input data, and the expected
output (behaviour).

test suite – a collection of test cases (or other test suites)
test runner – a software tool which manages the execution of
tests, and reports their outcome
test fixture – the preparation needed to perform one or more
tests

56 / 70

Unit tests

Unit-testing terminology

test case – the basic unit of testing, which checks the
behaviour of code in response to a particular set of inputs.
It consists of one particular set of input data, and the expected
output (behaviour).
test suite – a collection of test cases (or other test suites)

test runner – a software tool which manages the execution of
tests, and reports their outcome
test fixture – the preparation needed to perform one or more
tests

57 / 70

Unit tests

Unit-testing terminology

test case – the basic unit of testing, which checks the
behaviour of code in response to a particular set of inputs.
It consists of one particular set of input data, and the expected
output (behaviour).
test suite – a collection of test cases (or other test suites)
test runner – a software tool which manages the execution of
tests, and reports their outcome

test fixture – the preparation needed to perform one or more
tests

58 / 70

Unit tests

Unit-testing terminology

test case – the basic unit of testing, which checks the
behaviour of code in response to a particular set of inputs.
It consists of one particular set of input data, and the expected
output (behaviour).
test suite – a collection of test cases (or other test suites)
test runner – a software tool which manages the execution of
tests, and reports their outcome
test fixture – the preparation needed to perform one or more
tests

59 / 70

Unit tests

Test fixtures

The idea of a “fixture” comes from testing of hardware – a “fixture”
is everything that holds the piece of hardware in place, and provides
you with known environment and conditions it can be tested in.

60 / 70

Unit tests

Test fixtures

For software, we likewise may need to get the environment and
conditions into a known state for testing.

Things we might need to do:
Prepare input data (it may not be just simple numbers or
strings – it could be an MS Word document, say, or some
complex data structure)
Create fake or mock objects (used to deal with dependencies –
more on these later)
Load a database with a specific, known set of data
Create files with known contents
. . . etc.

61 / 70

Unit tests

Framework features

Most unit-testing frameworks provide the ability to -

collect related tests together (e.g. into suites)
identify and run all unit tests (or suites) in a module, or the
whole system
produce output in different forms (e.g. human-readable text,
XML, HTML)

62 / 70

Unit tests

Expected behaviour

What sort of behaviours might we expect from code under test?

return of a value
alteration of state
throwing of an exception

Basically, the same things that we would document as
postconditions.

Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

63 / 70

Unit tests

Expected behaviour

What sort of behaviours might we expect from code under test?
return of a value

alteration of state
throwing of an exception

Basically, the same things that we would document as
postconditions.

Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

64 / 70

Unit tests

Expected behaviour

What sort of behaviours might we expect from code under test?
return of a value
alteration of state

throwing of an exception

Basically, the same things that we would document as
postconditions.

Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

65 / 70

Unit tests

Expected behaviour

What sort of behaviours might we expect from code under test?
return of a value
alteration of state
throwing of an exception

Basically, the same things that we would document as
postconditions.

Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

66 / 70

Unit tests

Expected behaviour

What sort of behaviours might we expect from code under test?
return of a value
alteration of state
throwing of an exception

Basically, the same things that we would document as
postconditions.

Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

67 / 70

Unit tests

Expected behaviour

What sort of behaviours might we expect from code under test?
return of a value
alteration of state
throwing of an exception

Basically, the same things that we would document as
postconditions.

Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

68 / 70

Unit tests

Indicating what the tests are

We need to indicate to the test runner that something is intended to
be a test. Typical ways are:

annotations (example – JUnit 4.x)
inheritance (example – Python unittest)
naming conventions (example – Python unittest, cppunit)

69 / 70

Unit tests

References

Bruegge and Dutoit, Object-Oriented Software Engineering
Using UML, Patterns, and Java (Pearson, 2010)
Martin Fowler, “Mocks Aren’t Stubs”
(https://martinfowler.com/articles/mocksArentStubs.html)
Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code
(Addison-Wesley Professional, 2007)
Claessen and Hughes, “QuickCheck: a lightweight tool for
random testing of Haskell programs.” ACM Sigplan Notices
46.4 (2011): 53-64.
Kristopher Sandoval, “Who Invented the API?”, Sept 20 2018
(https://nordicapis.com/who-invented-the-api/).

70 / 70

https://martinfowler.com/articles/mocksArentStubs.html
https://nordicapis.com/who-invented-the-api/

	Documenting code
	Unit tests

