
CITS5501 Software Testing and Quality
Assurance

Introduction Pt 2 - Concepts in testing

Unit coordinator: Arran Stewart

1 / 34



Software defects

What does it mean for software to be wrong or defective in
some way?

Could be that it doesn’t do something you expect it to do, or
that the documentation says it should do
Could be that it does it, but poorly (slowly, insecurely, etc.)

2 / 34



Software defects

What does it mean for software to be wrong or defective in
some way?
Could be that it doesn’t do something you expect it to do, or
that the documentation says it should do

Could be that it does it, but poorly (slowly, insecurely, etc.)

3 / 34



Software defects

What does it mean for software to be wrong or defective in
some way?
Could be that it doesn’t do something you expect it to do, or
that the documentation says it should do
Could be that it does it, but poorly (slowly, insecurely, etc.)

4 / 34



Software defects

Have you experienced defects or problems when using a
software-based system?

What about when using a library?
Are they the same, or different?

5 / 34



Software defects

Have you experienced defects or problems when using a
software-based system?
What about when using a library?

Are they the same, or different?

6 / 34



Software defects

Have you experienced defects or problems when using a
software-based system?
What about when using a library?
Are they the same, or different?

7 / 34



“Shrink-wrap” software

Software which is not customized, but simply made available to
mass markets, is sometimes called “shrink-wrapped” software,
or said to be provided pursuant to a “click-through” license.
It is a mass-market commodity (like buying a container of milk):
consumers of the software have the option to “take it or leave
it” – the provider doesn’t customize it to their particular needs.
Small, medium and large businesses also buy “shrink-wrap”
products.
When a consumer uses a “shrink-wrap” product, they may rely
on the documentation to know what the product should do.
But if it works exactly according to the documentation, and
that’s not what the customer wants, that’s still a problem.

8 / 34



COTS

More customizable than “shrink-wrap” software is “Commercial
off-the-shelf” software.
It can be used “out of the box”; but in practice needs to be set
up and configured properly to meet a customer’s needs.
This is more like buying something like an alarm system, or a
backyard watering and irrigation system – they are available
“off-the-shelf”, but setting them up properly typically requires
some expertise.

9 / 34



Custom or “bespoke” software

The polar opposite of “shrink-wrap” software is custom or
“bespoke” software
This is software that is developed specifically for one
customer’s needs (though the provider may have standard
components it uses to provide particular solutions).
The system either needs to be written from scratch (unusual),
or at least, requires implementation of software (not just mere
“configuration”)
Exactly what the software should do will (hopefully) be spelled
out in a contract, as well as procedures and cost for making
changes to the system.

10 / 34



Software components

Shrink-wrap, COTS and bespoke software are all intended to
have users.
For software libraries and components, however, the “users” are
other programmers – who often have different sorts of
requirements to others.

11 / 34



Scope

We will initially focus on software that has clear requirements –
in particular, software libraries and components.

12 / 34



Requirements

“The function int square(int n) should take a single int

as a parameter, n, and should return the square of n – that is,
n × n”.

Suppose we are given a function someone else has coded, that
is supposed to meet this requirement – how can we tell if it
does or not?

13 / 34



Requirements

“The function int square(int n) should take a single int

as a parameter, n, and should return the square of n – that is,
n × n”.
Suppose we are given a function someone else has coded, that
is supposed to meet this requirement – how can we tell if it
does or not?

14 / 34



Requirements

What about this one?

"The function int squareRoot(int n) should take a single
int as a parameter, n, and should return the integral square
root of n – that is, the largest number x such that x × x ≤ n.
Are the requirements clear? What happens for negative
numbers?

15 / 34



Requirements

What about this one?
"The function int squareRoot(int n) should take a single
int as a parameter, n, and should return the integral square
root of n – that is, the largest number x such that x × x ≤ n.

Are the requirements clear? What happens for negative
numbers?

16 / 34



Requirements

What about this one?
"The function int squareRoot(int n) should take a single
int as a parameter, n, and should return the integral square
root of n – that is, the largest number x such that x × x ≤ n.
Are the requirements clear? What happens for negative
numbers?

17 / 34



Requirements

Another example:

"Objects of class Student should store the following data
about a particular student – their name (a string) and their
date of birth (a Date object).

The Student class should have:
A constructor take a string and date to initialize the name and
date of birth fields
A method, int getAge(), which returns the students current
age (in years)."

Are these requirements testable?

18 / 34



Software faults, errors & failures

Software failure: External, incorrect behavior with respect to
the requirements or other description of the expected behavior
Software fault: A static defect in the software
Software error: An incorrect internal state that is the
manifestation of some fault

19 / 34



Software failure

A software failure is the observable way in which software fails
to meet its requirements.

Examples:
You call square(3) and it returns 0.
You try to log into the LMS with your correct username and
password, and get a page saying “Server failure”
Microsoft Word crashes, losing your work, 5 minutes before you
have an assignment due

Describing a failure doesn’t describe why or how something
went wrong, just that it did.

20 / 34



Software failure, cont’d

Another example: desired behaviour for a passenger train is
that it should stay on the tracks.
If it is derailed, that can be considered a failure.

21 / 34



Software fault

A software fault is some static defect in the system.

“Static” means it is to be found in the static artifacts which
make up the system - i.e. the source code.

For example:

int square(n) { min(n * n, 0); }

contains a defect – it shouldn’t be calling a min function at all.

22 / 34



Question

What is this? A failure or a fault?

23 / 34



Errors

So that’s faults and failures.
The failure is observable behaviour, the fault is something
wrong in the soure code (or other static artifact) that gives rise
to the failure.
What about errors?
They are a little harder.

24 / 34



Errors, cont’d

An error refers to the state of a running system – an alternative
(and clearer) term is erroneous state.
It means a system state that is a manifestation at run-time of
some fault.
It is easiest to recognize in the case where there are invariants
a system must satisfy.

25 / 34



Errors, cont’d

For instance, suppose we have a List data structure, which
implements a linked list.
It can be expensive to work out the length of a linked list – the
whole list must be traversed – so we might “cache” the length
of the list, and just update it every stime something is added to
or removed from the list.

class LinkedList {

private Node startNode;

private int length;

public getLength() {

return length;

}

}

26 / 34



Errors, cont’d

This means that we need to keep the value of the length field
in sync with the actual length of the list.
This is expressed as an invariant – something that should
always hold true of an object, before and after a method call
on it.
In this case, the invariant is that “the length field should
always hold the actual length of the list”.

27 / 34



Errors, cont’d

If we have, say, an remove(index i) method which removes
the item at position i from the list, and we forget to update
the length field, then our list is now in an erroneous state.

28 / 34



Goals of testing

Based on process maturity:

Level 0 : There’s no difference between testing and debugging
Level 1 : The purpose of testing is to show correctness
Level 2 : The purpose of testing is to show that the software
doesn’t work
Level 3 : The purpose of testing is not to prove anything
specific, but to reduce the risk of using the software
Level 4 : Testing is a mental discipline that helps all IT
professionals develop higher quality software

29 / 34



Level 0 Thinking

Testing is the same as debugging
Does not distinguish between incorrect behavior and mistakes
in the program
Does not help develop software that is reliable or safe

30 / 34



Level 1 Thinking

Purpose is to show correctness
Correctness is impossible to achieve
What do we know if no failures?

Good software, or bad tests?
Test engineers have no:

Strict goal
Real stopping rule
Formal test technique
Test managers are powerless

31 / 34



Level 2 Thinking

Purpose is to show failures
Looking for failures is a negative activity
Puts testers and developers into an adversarial relationship
What if there are no failures?

32 / 34



Level 3 Thinking

Testing can only show the presence of failures
Whenever we use software, we incur some risk
Risk may be small and consequences unimportant
Risk may be great and consequences catastrophic
Testers and developers cooperate to reduce risk

33 / 34



Level 4 Thinking

A mental discipline that increases quality

Testing is only one way to increase quality
Test engineers can become technical leaders of the project
Primary responsibility to measure and improve software quality
Their expertise should help the developers

34 / 34


