CITS5501 Software Testing and Quality
Assurance
Introduction

Unit coordinator: Arran Stewart

1/19

Highlights

o This lecture gives a big picture view of what we will cover and
why.

o The big question: what makes software high quality? And how
can we repeatedly ensure we produce software of high quality?

2/19

Testing and quality assurance techniques

o Testing and quality assurance techniques range from basic
procedures every developer should know (unit testing, use of
test frameworks), through to techniques that are often only
used for high-assurance software (formal methods).

3/19

Areas where testing and quality assurance techniques are
used (2)

Some of the more interesting examples:

o Verifying that software meets particular safety or security
properties — an example is the provably secure seL4 Microkernel
@ Model checking — Microsoft uses model checking techniques to
test that driver code (which runs with high privileges) is using
the API correctly
o Enforcing properties with rich type systems:
o Memory safety
o Microsoft's research Singularity OS
o Encoding protocols using types (session types)
o Extracting programs from proofs (using e.g. proof assistants
like Agda)

4/19

https://sel4.systems/
https://en.wikipedia.org/wiki/Singularity_(operating_system)
http://simonjf.com/2016/05/28/session-type-implementations.html
http://wiki.portal.chalmers.se/agda/pmwiki.php

Unit Information

Unit Coordinator: Arran Stewart
Contact: arran.stewart@uwa.edu.au
Phone: 461 8 6488 1850

Office: Rm G.08 CSSE Building
Consultation: Thurs 4-5pm

Contact Hours:

o Lecture: Tues 2-4pm CSSE seminar room 1.24
o Workshop: Wed 10am, starting week 2

5/19

Unit website

Unit webpage: http://teaching.csse.uwa.edu.au/units/CITS5501/

All content for the unit (with the exception of lecture recordings)
will be delivered via this website, not the LMS.

6/19

http://teaching.csse.uwa.edu.au/units/CITS5501/

Textbook and other readings

You will need access to the following:

o Ammann and Offutt, Introduction to Software Testing, 2nd ed,
Cambridge University Press, 2016

o Either of:
o Pressman, Software Engineering: A Practitioner’s Approach, 9th
ed., 2019
o Sommerville, Software Engineering, 10th ed., Addison Wesley,
2015.

(Earlier editions should be fine as well.)

7/19

Textbook and other readings, cont'd

o The UWA library has copies of all the textboos
@ They can also be bought fairly cheaply online — see the unit
website for suggestions.

8/19

Lectures

It's recommended that you review the relevant textbook chapters for
lectures before attending the lecture.

A detailed topic schedule is available on the website.

9/19

Workshop details

These will be a combination of group-work exercises, and using
particular software tools covered in the lectures.

The venue is lab 2.01, but feel free to bring a laptop if you have one.

10/19

Assumed knowledge

o Completion of 12 points of programming-based units is a
prerequisite for enrolling in CITS5501.

@ In particular, | assume that you are familiar with programming
in at least one object-oriented language (typically either Python
or Java).

o Portions of the unit that require coding can be done in either
language.

o If you have done CITS1001, you'll be familiar with JUnit; if not,
you might want to look at the “Materials and reading” page of
the website where there are links to the documentation for
JUnit.

o It's assumed that you should be able to work out the meaning
of simple programs written in either language.

11/19

http://teaching.csse.uwa.edu.au/units/CITS5501/resources/

Assessment

3 short pieces of work relating to workshop material:

@ 5% each in weeks 3, 6 and 9.

o These will usually be very simple (usually less than a page of
work) and marked out of 5 — they are just to ensure that you're
keeping abreast of the material.

@ They'll be available a day before the workshop, and you can
either hand your work in at the workshop, or submit online via
cssubmit.

12/19

Assessment, cont'd

Project:

o Worth 35%, consists of code and a report.
o Task is to design and execute a testing and validation process
for a software system.

13/19

Assessment, cont'd

Exam:

e Worth 50%.

@ 5 questions with a total value of 100 marks.

@ The workshop exercises are a very good guide to what will be
on the exam.

14/19

Lecture schedule

o General overview of topics:

o Testing & testing methodology
o Quality assurance
o Formal methods and formal specifications

15/19

Software quality - what is it?

@ What are some ways that software can be good?
And what are some ways that it can be bad (or, less than
ideal)?

16/19

Ensuring quality software

@ There are multiple aspects to building quality software:

(]

Organisational processes — How does the software team
operate?

o Process and software standards — Are particular standards used?
o Process improvement — How is success in building quality

software measured and improved?

Requirements specification — How do we work out what
software we should be building? And how do we work out
whether we built the right software?

o Formal methods — Ways of proving that software is correct
o Testing — identifying and correcting defects

17/19

The software “illities”

There are many features that contribute to the success of software,
and very few relate to correctness. . .:

o Usability

o Maintainability

o Scalability

Reliability /Availability
o Extensibility

@ Securitability (sic)

o Portability

(]

18/19

Why test?

Testing is not just about demonstrating correctness. Testing is used
in several ways in modern software development:

Unit tests — Ensuring functional units are correct

Integration testing — Ensuring components work together
Acceptance testing — Getting paid at the end of the day
Regression Testing — Don't break the build!

Test Driven Design — “Test-first” software process

Tests as documentation — Complete test suites are often the
most accurate documentation a project has.

© ©6 6 06 0 o

19/19

