
CITS5501 Software Testing and Quality
Assurance
Introduction

Unit coordinator: Arran Stewart

1 / 19

Highlights

This lecture gives a big picture view of what we will cover and
why.
The big question: what makes software high quality? And how
can we repeatedly ensure we produce software of high quality?

2 / 19

Testing and quality assurance techniques

Testing and quality assurance techniques range from basic
procedures every developer should know (unit testing, use of
test frameworks), through to techniques that are often only
used for high-assurance software (formal methods).

3 / 19

Areas where testing and quality assurance techniques are
used (2)

Some of the more interesting examples:

Verifying that software meets particular safety or security
properties – an example is the provably secure seL4 Microkernel
Model checking – Microsoft uses model checking techniques to
test that driver code (which runs with high privileges) is using
the API correctly
Enforcing properties with rich type systems:

Memory safety
Microsoft’s research Singularity OS
Encoding protocols using types (session types)

Extracting programs from proofs (using e.g. proof assistants
like Agda)

4 / 19

https://sel4.systems/
https://en.wikipedia.org/wiki/Singularity_(operating_system)
http://simonjf.com/2016/05/28/session-type-implementations.html
http://wiki.portal.chalmers.se/agda/pmwiki.php

Unit Information

Unit Coordinator: Arran Stewart
Contact: arran.stewart@uwa.edu.au
Phone: +61 8 6488 1850
Office: Rm G.08 CSSE Building
Consultation: Thurs 4-5pm

Contact Hours:

Lecture: Tues 2-4pm CSSE seminar room 1.24
Workshop: Wed 10am, starting week 2

5 / 19

Unit website

Unit webpage: http://teaching.csse.uwa.edu.au/units/CITS5501/

All content for the unit (with the exception of lecture recordings)
will be delivered via this website, not the LMS.

6 / 19

http://teaching.csse.uwa.edu.au/units/CITS5501/

Textbook and other readings

You will need access to the following:

Ammann and Offutt, Introduction to Software Testing, 2nd ed,
Cambridge University Press, 2016

Either of:
Pressman, Software Engineering: A Practitioner’s Approach, 9th
ed., 2019.
Sommerville, Software Engineering, 10th ed., Addison Wesley,
2015.

(Earlier editions should be fine as well.)

7 / 19

Textbook and other readings, cont’d

The UWA library has copies of all the textboos
They can also be bought fairly cheaply online – see the unit
website for suggestions.

8 / 19

Lectures

It’s recommended that you review the relevant textbook chapters for
lectures before attending the lecture.

A detailed topic schedule is available on the website.

9 / 19

Workshop details

These will be a combination of group-work exercises, and using
particular software tools covered in the lectures.

The venue is lab 2.01, but feel free to bring a laptop if you have one.

10 / 19

Assumed knowledge

Completion of 12 points of programming-based units is a
prerequisite for enrolling in CITS5501.
In particular, I assume that you are familiar with programming
in at least one object-oriented language (typically either Python
or Java).
Portions of the unit that require coding can be done in either
language.
If you have done CITS1001, you’ll be familiar with JUnit; if not,
you might want to look at the “Materials and reading” page of
the website where there are links to the documentation for
JUnit.
It’s assumed that you should be able to work out the meaning
of simple programs written in either language.

11 / 19

http://teaching.csse.uwa.edu.au/units/CITS5501/resources/

Assessment

3 short pieces of work relating to workshop material:

5% each in weeks 3, 6 and 9.
These will usually be very simple (usually less than a page of
work) and marked out of 5 – they are just to ensure that you’re
keeping abreast of the material.
They’ll be available a day before the workshop, and you can
either hand your work in at the workshop, or submit online via
cssubmit.

12 / 19

Assessment, cont’d

Project:

Worth 35%, consists of code and a report.
Task is to design and execute a testing and validation process
for a software system.

13 / 19

Assessment, cont’d

Exam:

Worth 50%.
5 questions with a total value of 100 marks.
The workshop exercises are a very good guide to what will be
on the exam.

14 / 19

Lecture schedule

General overview of topics:
Testing & testing methodology
Quality assurance
Formal methods and formal specifications

15 / 19

Software quality - what is it?

What are some ways that software can be good?
And what are some ways that it can be bad (or, less than
ideal)?

16 / 19

Ensuring quality software

There are multiple aspects to building quality software:
Organisational processes – How does the software team
operate?
Process and software standards – Are particular standards used?
Process improvement – How is success in building quality
software measured and improved?
Requirements specification – How do we work out what
software we should be building? And how do we work out
whether we built the right software?
Formal methods – Ways of proving that software is correct
Testing – identifying and correcting defects

17 / 19

The software “illities”

There are many features that contribute to the success of software,
and very few relate to correctness. . . :

Usability
Maintainability
Scalability
Reliability/Availability
Extensibility
Securitability (sic)
Portability

18 / 19

Why test?

Testing is not just about demonstrating correctness. Testing is used
in several ways in modern software development:

Unit tests – Ensuring functional units are correct
Integration testing – Ensuring components work together
Acceptance testing – Getting paid at the end of the day
Regression Testing – Don’t break the build!
Test Driven Design – “Test-first” software process
Tests as documentation – Complete test suites are often the
most accurate documentation a project has.

19 / 19

