
Analyzer commands

CITS5501 Software Testing and Quality
Assurance

Specifications languages

Unit coordinator: Arran Stewart

1 / 90

Analyzer commands

Re-cap of formal methods

We’ve divided up formal methods into three rough categories
(though the boundaries can be fuzzy):

advanced type systems
program verification
model-based systems

2 / 90

Analyzer commands

Formal methods
How can we tell what techniques fall into what category?

advanced type systems:

I assume a basic familiarity with what a type system does – it
enforces rules such as (in Java), “You can’t assign a String object
to (say) a variable of type boolean.”
If you want a definition of a type system, here is one from Pierce
(2002):
“a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of
values they compute”
I use “advanced” just to mean “Not in widespread use in the most
popular statically type-checked languages” (which would be Java,
C# and C++)

not a high bar, they are fairly simple type systems
languages with more complex type systems: Haskell, Rust, ML,
Ocaml, PureScript, ATS

3 / 90

https://www.haskell.org/
https://www.rust-lang.org/
http://www.smlnj.org/
https://ocaml.org/
https://en.wikipedia.org/wiki/ATS_(programming_language)

Analyzer commands

Formal methods
How can we tell what techniques fall into what category?

advanced type systems:

I assume a basic familiarity with what a type system does – it
enforces rules such as (in Java), “You can’t assign a String object
to (say) a variable of type boolean.”
If you want a definition of a type system, here is one from Pierce
(2002):
“a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of
values they compute”
I use “advanced” just to mean “Not in widespread use in the most
popular statically type-checked languages” (which would be Java,
C# and C++)

not a high bar, they are fairly simple type systems
languages with more complex type systems: Haskell, Rust, ML,
Ocaml, PureScript, ATS 4 / 90

https://www.haskell.org/
https://www.rust-lang.org/
http://www.smlnj.org/
https://ocaml.org/
https://en.wikipedia.org/wiki/ATS_(programming_language)

Analyzer commands

Formal methods

program verification:

Does the process involve using the source code as the model,
and proving it meets preconditions and postconditions?

Then it’s program verification

5 / 90

Analyzer commands

Model-based systems

Does the process involve using a model which is fairly different
to the source code, and checking or proving properties?

Then it’s a model-based system.
Terminology you may encounter:

One particular class of model-based systems are called “model
checkers” – but we won’t look at them in detail

“Specification language”:
Model-based systems are often used to make more precise the
specification for a system or some component – in which case
they may be called specification languages

6 / 90

Analyzer commands

Specification languages

Some examples of general-purpose specification languages:

Z notation
based on set theory and predicate logic
developed in the 1970s.
Now has an ISO standard, and variations (e.g. object-oriented
versions)

TLA+:
Stands for “Temporal Logic of Actions”
A general-purpose specification language
Especially well-suited for writing specifications of concurrent
and distributed systems
For finite state systems, can check (up to some number of
steps) that particular properties hold (e.g. safety, no deadlock)

7 / 90

Analyzer commands

TLA+

Using TLA+, code for Peterson’s mutual exclusion algorithm:
--algorithm Peterson {

variables flag = [i \in {0, 1} |-> FALSE], turn = 0;
* Declares the global variables flag and turn and their initial values;
* flag is a 2-element array with initially flag[0] = flag[1] = FALSE.

fair process (proc \in {0,1}) {
* Declares two processes with identifier self equal to 0 and 1.
* The keyword fair means that no process can stop forever if it can
* always take a step.
a1: while (TRUE) {

skip ; * the noncritical section
a2: flag[self] := TRUE ;
a3: turn := 1 - self ;
a4: await (flag[1-self] = FALSE) \/ (turn = self);

* \/ is written || in C.
cs: skip ; * the critical section
a5: flag[self] := FALSE

8 / 90

https://lamport.azurewebsites.net/tla/peterson.html?back-link=high-level-view.html
https://en.wikipedia.org/wiki/Peterson%27s_algorithm

Analyzer commands

TLA+

The TLA+ tools turn this algorithm (written in a language
called PlusCal), into a TLA+ specification, which can then be
checked.
The TLC model checker can verify that the algorithm satisfies
two important properties:

mutual exclusion, meaning that two processes are never
executing their critical section at the same time
starvation freedom, meaning that each process keeps executing
its critical section.

9 / 90

Analyzer commands

Alloy

We’ll be using the Alloy specification language
Alloy is both a language for describing structures, and a tool
(written in Java) for exploring and checking those structures.
Influenced by Z notation, and modelling languages such as
UML (the Unified Modelling Language).
Website: http://alloy.mit.edu/ (The Alloy Analyzer tool can be
downloaded from here.)

10 / 90

http://alloy.mit.edu/

Analyzer commands

Alloy language

We’ll look at a simple model of a file system (based on the Alloy
tutorial at http://alloytools.org/tutorials/online/)

To a first approximation, Alloy looks a little like Java:
// A file system object in the file system
sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

11 / 90

http://alloytools.org/tutorials/online/

Analyzer commands

Alloy

In Alloy, we declare rules about a mini-universe: things that exist,
and properties that should be true of them.

“There are things called animals”

sig Animal {}

“A cat is a sort of animal”

sig Cat extends Animal {}

12 / 90

Analyzer commands

Alloy – relations

Alloy’s semantics are defined in terms of mathematical relations.

Example relations:

“Is less than”. e.g. “2 < 4”, “10 < 9”.
“Is the blood relative of”. e.g. “Alice is the blood relative of
Bob”.
“Shares an office with”. e.g. “Bob shares an office with Carol”.

These are all binary relations. Statements about two entities, which
can be true or false.

13 / 90

Analyzer commands

Alloy – relations

Relations can also be unary (about one entity):

“Is even”. e.g. even(2).
“Is an employee”. e.g. “Dan is an employee”.

14 / 90

Analyzer commands

Alloy – relations

They can be ternary:

“_ is delivered to _, by _”. e.g. “The blue book was delivered
to Alice, by Bob”.
“_ was made by _, programming in _”. e.g. “The timetabling
system was made by Ralph, programming in Java”.

Or, in general, they can be n-ary – a statement about n things.

15 / 90

Analyzer commands

Alloy – relations

We can think of predicates as being not-yet-complete functions – an
n-ary predicate isn’t true or false in itself, until we supply it with n
arguments.

“Is less than” isn’t true or false, but “2 < 4” is.

16 / 90

Analyzer commands

Alloy – relations

Another way of viewing relations is as being a sort of table –
containing all the things of which the predicate is true.

e.g. “shares an office with”:

Person A Person B

Alice Bob
Bob Alice
Dan Eve
Eve Dan

17 / 90

Analyzer commands

Alloy – relations

Relations can be finite, or infinite.

An infinite relation: “is less than”

Number A Number B

1 2
1 3
2 3
.

18 / 90

Analyzer commands

Alloy – sigs

sig Animal {} says “There are things called animals”.

It defines a unary relation, “Animal”. Something thing can
be-an-animal, or not.

19 / 90

Analyzer commands

Alloy – sigs

sig Cat extends Animal {} says “Cats are a sort of animal”.

If something has the property “is-an-animal”, then it might also
have the property “is-a-cat”.

We can read “extends” as also meaning “is a kind of”, or “is a
subtype of”.

20 / 90

Analyzer commands

Alloy – subtypes

So, extends indicates subtypes (similar to Java).
Here, Dir and File are both subtypes of FSObject:

sig FSObject {}

sig Dir extends FSObject {}

sig File extends FSObject {}

When we declare Dir or a File to be sub-types of FSObject, they are
considered to be mutually disjoint sets
The above says “There are things called FSObjects. An FSObject might be
a Dir or it might be a File (or neither), but not both”.

21 / 90

Analyzer commands

Alloy – properties

We can specify properties of entities (which look a bit like instance
variables in OO languages):

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

22 / 90

Analyzer commands

Alloy – properties

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

These are usually written within the sig of an entity.

They actually represent relations between entities.

23 / 90

Analyzer commands

Alloy – properties

// A file system object in the file system

sig FSObject { parent: lone Dir }

There are multiple ways of reading this:

“There are such things as FSObjects. An FSObject has the
property ‘parent’. An FSObject can have zero or one parents.”
Or –
“A relation ‘parent’ exists between FSObjects and Dirs.
Whenever an FSObject appears in the relation, it can be
associated with at most one Dir.”

These are exactly equivalent.

24 / 90

Analyzer commands

Alloy – properties
// A file system object in the file system

sig FSObject { parent: lone Dir }

The “lone” means “zero or one”. It is a cardinality.

Other possible cardinalities are:
“some” (one or more)
“one” (exactly one)
“set” (zero or more)
“none” (zero)

When we specify a property using a colon in this way, the
default multiplicity is one.

We can use cardinalities whenever we are specifying a set or
relation: since sigs also represent sets (e.g. the set of Dirs), we
can give them cardinalities, too.

25 / 90

Analyzer commands

Cardinalities

In set theory terms . . .
one means the relation is a total function –
sig Student { name : one String } –
for every Student, we can map to a string which is their name.
lone means the relation is a partial function –
sig Student { driverLicenseNum : lone String } – \
for every Student, we may be able to map to a diver’s license
number.
(Here, it’s assumed you can’t have more than one license.)

26 / 90

Analyzer commands

Examples

sig Node { next : lone Node }

// The node can have one 'next' Node

sig Dir { contents : set FSObject }

// directories have 0 or more objects they contain

one Phoenix extends Animal {}

// There is one Phoenix in the world

27 / 90

Analyzer commands

Alloy – properties

one sig RootDir extends Dir { }

There exists a “RootDir”, but only one of them.

28 / 90

Analyzer commands

Exercise

Games:

There are things called games.
Games can be board games, or field games.
There may be other sorts of games.

29 / 90

Analyzer commands

Relation examples

// A file system object in the file system
sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

30 / 90

Analyzer commands

Relations

// A file system object in the file system
sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

To a first approximation, we can think of relations as behaving like fields in
an OO language.
sig FSObject { parent: lone Dir } can be read as
“Things of type FSObject have a parent, which is of type Dir”.
lone means “at most one” – i.e., you can have zero or one parents.
(We need this because the root directory has no parent.)

31 / 90

Analyzer commands

Relations

// A file system object in the file system
sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

More precisely, parent is a relation between FSObject and Dir.

32 / 90

Analyzer commands

Relations

So, signature declarations will look like:

sig SomeName {
field1 : FieldType,
field2a, field2b : OtherFieldType

}

The order of declarations doesn’t matter – SomeName, FieldType
and OtherFieldType could be declared in any order in a file.

33 / 90

Analyzer commands

Relations

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

Here, we say that a Dir has a field contents, which is a set of
FSObjects.

The could contain one item, many items, or no items.

34 / 90

Analyzer commands

Examples

“A car has one engine”
sig Car { engine: one Engine }, or
sig Car { engine: Engine }

“People have zero or more hobbies”
sig Person { hobbies: set Activity }

35 / 90

Analyzer commands

Exercises

Classes have at least one lecturer, and zero or more students.

Animals have zero or more legs
Some animals are carnivores
Textbooks have one or more pages

36 / 90

Analyzer commands

Exercises

Classes have at least one lecturer, and zero or more students.
Animals have zero or more legs

Some animals are carnivores
Textbooks have one or more pages

37 / 90

Analyzer commands

Exercises

Classes have at least one lecturer, and zero or more students.
Animals have zero or more legs
Some animals are carnivores

Textbooks have one or more pages

38 / 90

Analyzer commands

Exercises

Classes have at least one lecturer, and zero or more students.
Animals have zero or more legs
Some animals are carnivores
Textbooks have one or more pages

39 / 90

Analyzer commands

Alloy language – comments

// A file system object in the file system
sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

Comments can be written in multiple ways

single-line comments with “//” or “--”
multiple-line comments with “/* ... */”

40 / 90

Analyzer commands

Alloy language – comments

// A file system object in the file system
sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

Comments can be written in multiple ways
single-line comments with “//” or “--”

multiple-line comments with “/* ... */”

41 / 90

Analyzer commands

Alloy language – comments

// A file system object in the file system
sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

Comments can be written in multiple ways
single-line comments with “//” or “--”
multiple-line comments with “/* ... */”

42 / 90

Analyzer commands

Facts

We can declare additional constraints which must be true of any
possible “world”.

These constraints might be about properties of sets:
sig Employee {}

fact atLeastTwoEmployees {
#Employee >= 2

}

sig Manager {}

fact moreManagersThanEmployees {
#Manager >= #Employee

}

43 / 90

Analyzer commands

Alloy – facts

How can we express that any FSObject must be one of either a Dir or a
File?
(i.e., there are no other sorts of FSObject)

We will use a fact:

sig FSObject { parent: lone Dir }
sig Dir extends FSObject { contents: set FSObject }
sig File extends FSObject { }

// All file system objects are either files or directories
fact { File + Dir = FSObject }

44 / 90

Analyzer commands

Alloy – facts

How can we express that any FSObject must be one of either a Dir or a
File?
(i.e., there are no other sorts of FSObject)
We will use a fact:

sig FSObject { parent: lone Dir }
sig Dir extends FSObject { contents: set FSObject }
sig File extends FSObject { }

// All file system objects are either files or directories
fact { File + Dir = FSObject }

45 / 90

Analyzer commands

Alloy – facts

The general syntax for a fact is

fact name { formulas }

formulas are Boolean expressions, and by putting them in a
fact, we’re constraining them to be true.

46 / 90

Analyzer commands

Alloy – abstract signatures

(An alternative way to say that all FSObjects must be Dirs or
Files would be to declare FSObject abstract)

(This is similar to the use of the abstract keyword in Java;
it means there are no objects that are directly of type
FSObject; they must be members of some subtype, instead.)

47 / 90

Analyzer commands

Alloy – abstract signatures

(An alternative way to say that all FSObjects must be Dirs or
Files would be to declare FSObject abstract)
(This is similar to the use of the abstract keyword in Java;
it means there are no objects that are directly of type
FSObject; they must be members of some subtype, instead.)

48 / 90

Analyzer commands

Alloy – operators

Operators are available to construct Boolean expressions.

subset: in
set1 in set2 — set1 is a subset of set2
informally: “some set2 are set1”, or “a set2 may be set1”;
but the set-theoretic meaning is more precise.

set equality: =
set1 = set2 — set1 equals set2

scalar equality: =
scalar = value — scalar equals value

49 / 90

Analyzer commands

Alloy – subsets

We saw that subtypes are disjoint.

We can also declare subsets:

sig signame in supername { ... }

Subsets are not necessarilly disjoint, and may have multiple
parents

50 / 90

Analyzer commands

Alloy – subsets

sig Animal {}
sig Cat extends Animal {}
sig Dog extends Animal {}
sig FurryPet in Cat + Dog {}

“FurryPet” is a subset of the union of Cat and Dog.
Some dogs and cats may not be furry (hairless breeds).
We could make them all furry as follows:

fact { Cat + Dog = FurryPet }

Are there animals other than cats and dogs?
Can they be furry?

51 / 90

Analyzer commands

More operators

We can use Boolean connectives and, or, implies, iff, not to join
Boolean expressions.
e.g.

fact { A + B = C and X + Y = Z }

52 / 90

Analyzer commands

Back to the file system example

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// There exists a root
one sig Root extends Dir { } { no parent }

FSObjects have parents, and directories have contents, and we have
constrained the multiplicities . . .
but there’s currently no connection between them.

53 / 90

Analyzer commands

File system

So we could have this situation:

54 / 90

Analyzer commands

File system

We will need to constrain things more, so we’ll use a fact.

// A directory is the parent of its contents
fact { all d: Dir, o: d.contents | o.parent = d }

This says: "for any thing (let’s call it d for the moment) of type Dir,
and for any thing (let’s call it o for the moment) which is in the set
d.contents:
o’s parent is d.

It uses a quantifier (“all”) – we’ll look at these more in the workshop.

55 / 90

Analyzer commands

Alloy signatures

Alloy also has some signatures built in – for instance Int – and
others are available in standard library modules (for instance there is
a module util/sequence with useful signatures for modelling
sequences (list-like objects).

56 / 90

Analyzer commands

Relations

We’ve seen that Alloy lets us declare that there are relations
between things.

sig Person { friends : Person } // People can have friends

We can use relations to model things like

containment – one sort of entity contains others
labelling – for instance, we might state that computers have an
IP address, which acts as a sort of “name”
grouping – we might want to single out objects which have
some common property (e.g. carnivores, which are animals, and
all have the property that they eat meat)
linking – there is a link between objects in which they are
“peers” (rather than one “containing” the other)

57 / 90

Analyzer commands

Analyzer commands

58 / 90

Analyzer commands

Running the Alloy Analyzer

There are two main ways of using the Alloy Analyzer.

The run command asks the analyzer to construct examples of our
model – up to some maximum size – and try to find one which
satisfies conditions we specify.

For the check command, we specify some assertion which we think
should be true, and ask the analyzer if it can find any
counterexamples.

(They are a bit like opposites – run is asking for a case where our
condition is true, check for one where it is not.)

59 / 90

Analyzer commands

The run command

The run command uses predicates, statements which can be true or
false, to filter the “worlds” we’re interested in.

60 / 90

Analyzer commands

Alloy predicates
An example predicate:
pred hasSuccessor(n : Node) {
#(n.next) = 1
}

This says “this predicate is true if the Node we apply it to has exactly one
‘next’ node”.

Predicates are quite similar to functions. They take zero or more
arguments, and can be re-used in multiple places in our model.

However, predicates always evalue to either “true” or “false” – you can
think of them as always having return type bool.

And they contain constraints, rather than statements.
pred oneBeforeLast(n : Node) {
#(n.next) = 1
#(n.next.next) = 0
} 61 / 90

Analyzer commands

Alloy predicates

Note that we could rewrite the previous examples as follows:

pred hasSuccessor(n : Node) {

one n.next

}

pred oneBeforeLast(n : Node) {

one n.next

no n.next.next

}

one just means “has cardinality one”, and no just means “has
cardinality zero”.

62 / 90

Analyzer commands

Alloy predicates

If our predicate has no constraints in it, then it is always true:

pred alwaysTrue(n : Node) {

}

pred alsoAlwaysTrue() { // preds can have no arguments

}

63 / 90

Analyzer commands

Example predicates

Here are some sample predicates:

A predicate that takes no arguments, and is true if 2 < 3:

pred myPred() {

2 < 3

}

A predicate that takes one argument, a, and is true if a < 3:

pred myPred(a : Int) {

a < 3

}

64 / 90

Analyzer commands

Predicates operating on sets

The arguments to predicates can be sets, not just “individuals”:

sig Card {suit: Suit}

sig Suit {}

pred ThreeOfAKind (hand: set Card) {

#hand.suit = 1 and #hand = 3

}

65 / 90

Analyzer commands

run command

We “run” an Alloy model by asking the analyzer to look for a
sample “world” for us which satisfies some predicate (up to a
particular “size” of the world).

By convention, if we want to put no constraints on what we see, we
call our predicate “show”.

sig Node { next : lone Next }

pred show() {}

run show for 3

66 / 90

Analyzer commands

run command

sig Node { next : lone Node }

pred show() {}

run show for 3

the show means we want the analyzer to find a world in which
show is true. (Which is any world – show is always true.)
for 3 means the analyzer will consider worlds in which there
are up to 3 objects for any signature we specified.
(It needs to know this “scope” so it can decide when to give up
if it can’t find an example.)

67 / 90

Analyzer commands

Example of run

sig Node { next : lone Node }

pred show() {}

pred oneBeforeLast(n : Node) {

one n.next

no n.next.next

}

run oneBeforeLast for 3

This asks Alloy to find a universe in which the predicate
oneBeforeLast is true of some Node.

68 / 90

Analyzer commands

Example of run

sig Node { next : lone Node }

pred allHaveSuccessors() {

all n : Node | one n.next

}

run allHaveSuccessors for 3

This asks Alloy to find a universe in which all Nodes have a ‘next’
Node – what sort of example might it come up with?

69 / 90

Analyzer commands

Example of run
sig Node { next : lone Node }

pred allHaveSuccessors() {
all n : Node | one n.next

}

run allHaveSuccessors for 3

70 / 90

Analyzer commands

Example of run

Oops. If we were intending to model non-cyclic linked lists, this
probably isn’t what we had in mind – you can never reach the “end”
of this list.

We need to constrain our world a bit more.
sig Node { next : lone Node }

fact noSelfSuccessors {
all n : Node | n.next != n

}

pred allHaveSuccessors() {
all n : Node | one n.next

}

run allHaveSuccessors for 3

71 / 90

Analyzer commands

Example of run

sig Node { next : lone Node }

fact noSelfSuccessors {

all n : Node | n.next != n

}

pred allHaveSuccessors() {

all n : Node | one n.next

#Node > 0

}

run allHaveSuccessors for 3

72 / 90

Analyzer commands

Example of run

By viewing examples which satisfy particular predicates, we can
refine our model until it matches what we want.

73 / 90

Analyzer commands

check

Alternatively, we might think there’s some predicate we think should
never be violated, and ask Alloy to double-check this – can it find a
counter-example?

We’ll see examples of check commands in the workshop.

74 / 90

Analyzer commands

File system example

Let’s revisit the file system example from last lecture.
sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// There exists a root
one sig Root extends Dir { } { no parent }

FSObjects have parents, and directories have contents, and we have
constrained the multiplicities

75 / 90

Analyzer commands

File system example
We can run this to see examples of file systems which match our
specifications.

sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject {
contents: set FSObject

}

sig File extends FSObject { }

// There exists a root
one sig Root extends Dir { } {
no parent
}

pred show() {}
run for 3

76 / 90

Analyzer commands

File system example
We can run this to see examples of file systems which match our
specifications.

sig FSObject {
parent: lone Dir

}

sig Dir extends FSObject {
contents: set FSObject

}

sig File extends FSObject { }

// There exists a root
one sig Root extends Dir { } {
no parent
}

pred show() {}
run for 3

77 / 90

Analyzer commands

File system

We need to constrain things more, so we’ll use a fact.

// A directory is the parent of its contents
fact { all d: Dir, o: d.contents | o.parent = d }

This says: "for any thing (let’s call it d for the moment) of type Dir,
and for any thing (let’s call it o for the moment) which is in the set
d.contents:
o’s parent is d.

78 / 90

Analyzer commands

Address book example

Consider the following specification for an address book:

sig Name, Addr {}

sig Book {

addr: Name -> lone Addr

}

Let’s limit the scope to just one Book, like this:

pred show() {}

run show for 3 but 1 Book

We’ll create at most 3 objects, except for Book, which we’ll
only create 1 of.

79 / 90

Analyzer commands

Running predicates

Alloy will find us a basic instance with a link from a single
name to an address;
let’s try and find instance with more than one name.

pred show (b : Book) {

#b.addr > 1

}

This says we want more than one address in our Book

80 / 90

Analyzer commands

Consistency

Can we have one name linking to more than one address?

pred show (b: Book) {

#b.addr > 1

some n: Name | #n.(b.addr) > 1

}

The second line asserts that there exist some (one or more)
names, such that (in normal notation) the size of b.addr(n) is
greater than 1.

Alloy tells us that nothing satisfies this predicate
(unsurprisingly, because of how we defined our signatures).

81 / 90

Analyzer commands

Consistency

It’s useful to periodically check to make sure that we haven’t
over-constrained our model . . .
(i.e., made it impossible for consistent instances to ever exist)
. . . and also to check that we have enough constraints.
(i.e., the sorts of instances generated match up with our
intentions.)

82 / 90

Analyzer commands

Consistency

Let’s check that we can have the result of “function
application” result in a set larger than one –
i.e., there is more than one address mapped to.

pred show (b: Book) {

#b.addr > 1

#Name.(b.addr) > 1

}

run show for 3 but 1 Book

(This says to take the function b.addr for our book, and apply
it to the set Name.)

83 / 90

Analyzer commands

Operations

We can also write predicates that represent operations on
things;
typically, they’ll refer to the “before” and “after” states of
those things.

pred add (b, b': Book, n: Name, a: Addr) {

b'.addr = b.addr + n -> a

}

Our predicate add is a constraint, and says that b'.addr is the
union of b'.addr and the tuple (n,a).

84 / 90

Analyzer commands

Operations

If we want to see if we can find instances that satisfy this predicate,
we’ll want to enlarge the scope:

pred showAdd (b, b': Book, n: Name, a: Addr) {
add[b, b', n, a]
#Name.(b'.addr) > 1

}

run showAdd for 3 but 2 Book

Using the Alloy visualizer, we can see what the “before” and “after”
books look like.

In the predicate above, the “add” predicate is invoked.
This is a bit more like traditional function application: we supply
arguments to the predicate between square brackets.

(Earlier versions of Alloy used parentheses.)

85 / 90

Analyzer commands

Operations

We can write similar code for other operations, like “delete”,
and check that our expected constraints hold.

86 / 90

Analyzer commands

Advantages of using Alloy to check models

Alloy allows us to build models incrementally.
We can start with a small, simple model, and add features.
Furthermore, it’s much easier to see what our model is when
it’s not commingled with code.

Once an application becomes large, we can imagine that when
written in Java (say), there is a great deal of implementation
code that obscures the abstract model.

87 / 90

Analyzer commands

Comparison with other methods – “model checking”

We refer to this as “checking our model”; but note that if
people refer to “model checking”, on its own, that refers to a
different sort of formal method.
“Model checking” on its own normally refers to using various
sorts of temporal logic to explore the evolution of finite state
machines, and see whether particular constraints hold.

88 / 90

Analyzer commands

Comparison with other methods – proofs and verification

Note that Alloy only generates model instances up to a certain
size;

it doesn’t prove that a model is consistent.
However, often, if there is an inconsistency, it will show up in
quite small models.
In the workshop, we’ll see additional examples of Alloy models.

89 / 90

Analyzer commands

References

Pierce, Benjamin C. Types and programming languages. MIT
press, 2002.
Pressman, R., Software Engineering: A Practitioner’s Approach,
McGraw-Hill, 2005
Huth and Ryan, Logic in Computer Science
Pierce et al, Software Foundations vol 1
Alloy tutorial at http://alloytools.org
Jackson, Software Abstractions, 2006, MIT Press.

90 / 90

https://softwarefoundations.cis.upenn.edu/lf-current/Preface.html
http://alloytools.org

	Analyzer commands

