
Formal methods Sorts of formal methods

CITS5501 Software Testing and Quality
Assurance

Formal methods

Unit coordinator: Arran Stewart

1 / 52

Formal methods Sorts of formal methods

Formal methods

2 / 52

Formal methods Sorts of formal methods

Sources

Some useful sources, for more information:

Pressman, R., Software Engineering: A Practitioner’s Approach,
McGraw-Hill, 2005
Huth and Ryan, Logic in Computer Science
Pierce et al, Software Foundations vol 1

3 / 52

https://softwarefoundations.cis.upenn.edu/lf-current/Preface.html

Formal methods Sorts of formal methods

Overview

When doing software engineering – specifying and developing
software systems – the activities done can be done with varying
levels of mathematical rigor.
For instance, we could write a requirement

informally, just using natural language, and perhaps tables and
diagrams. This is easy, but can be imprecise and ambiguous
(and hard to spot when that has occurred)
semi-formally, perhaps using occasional mathematical formulas
or bits of pseudocode to express what’s required
mostly using mathematical notation, with a bit of English to
clarify what the notation represents. This is typically a lot more
work, and it can be harder to ensure the notation matches our
intuitive idea of whhat the system should do, but has little or no
vagueness or ambiguity.

4 / 52

Formal methods Sorts of formal methods

Overview (2)

Things towards the “more formal” side of this spectrum will
tend to get called “lightweight formal methods” or “formal
methods”.

5 / 52

Formal methods Sorts of formal methods

Definitions

Formal methods used in developing computer systems are
mathematically based techniques for describing system
properties. Such formal methods provide frameworks within
which people can specify, develop, and verify systems in a
systematic, rather than ad hoc manner.

— Encyclopedia of Software Engineering [Mar01]

Problems with conventional specs:

contradictions
ambiguities
vagueness
incompleteness
mixed levels of abstraction

6 / 52

Formal methods Sorts of formal methods

A typical approach

Often, we’ll apply formal methods in the following way:

We’ll have some specification – some property that we want
our system to have

e.g., that it calculates the factorial of a natural number; or
never gets deadlocked; or has certain security properties.

And we’ll have something representing the system – this is
called a model

This could be actual code, or it could be annotated code, or it
could be some more abstract model of the system (like state
machines, which we have seen earlier)

And we will try to show that the model meets the specification.

7 / 52

Formal methods Sorts of formal methods

Rationale

Why use formal methods?
Building reliable software is hard.

Software systems can be hugely complex, and knowing exactly
what a system is doing at any point of time is likewise hard.

So computer scientists and software engineers have come up
with all sorts of techniques for improving reliability (many of
which we’ve seen) – testing, risk management, quality controls,
maths-based techniques for reasoning about the properties of
software

And this last sort of technique is what we call formal methods.

8 / 52

Formal methods Sorts of formal methods

Rationale

By reasoning about the properties of software – i.e., proving
things about it – we can get much greater certainty that our
programs are reliable and error-free, than we can through
testing
Testing is a sort of empirical investigation – we go out and
check whether we can find something (bugs, in this case)
But if we don’t find it, that doesn’t mean that whatever we
were looking for doesn’t exist – we may not have looked hard
enough or in the right places.

(People once thought it was an eternal and obvious truth that
there weren’t such things as black swans, but it turned out they
weren’t looking in the right places.)

9 / 52

Formal methods Sorts of formal methods

Program verification

Proofs of correctness use techniques from formal logic to prove
that if the starting state (i.e., “input” variables) of a program
satisfies particular properties, than the end state after
executing a program (i.e., “output” variables) satisfies some
other properties.
The first lot of properties are called preconditions (assertions
that hold prior to execution of a piece of code), and the second
lot are postconditions (assertions that hold after execution)

10 / 52

Formal methods Sorts of formal methods

Example
By way of example, we’ll use fragments of code from the Dafny
programming language.

It is somewhat similar in style to Java or C#, but includes built-in
features for program verification.

To write a method Abs() which calculates the absolute value of an
integer, we woud write code something like this:

method Abs(x: int) returns (y: int) {

if x < 0

{ return -x; }

else

{ return x; }

}

11 / 52

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

Formal methods Sorts of formal methods

Dafny code

One difference from Java is that the return value is given its own
name, “y”.

method Abs(x: int) returns (y: int) {

if x < 0

{ return -x; }

else

{ return x; }

}

12 / 52

Formal methods Sorts of formal methods

Dafny postconditions
Why is this? It’s because we can add postconditions to Dafny code,
which refer to the return value (or to input parameters, as well), so
it’s convenient to give it a name.

method Abs(x: int) returns (y: int)

ensures 0 <= y

{

...

}

Multiple “ensures” specifications can be added
“ensures” specifications can make use of the ususal logical
connectives (e.g. “&&”, “||”)
The suggested style is for distinct “properties” to be given their
own “ensures” specification 13 / 52

Formal methods Sorts of formal methods

Dafny preconditions

Preconditions can be specified with keyword “requires”

method AddOne(x: int) returns (y: int)

requires x > 0

ensures y > 0

{

return x + 1;

}

14 / 52

Formal methods Sorts of formal methods

Dafny verification

Dafny will actually reject programs with postconditions it can’t
prove are correct.
i.e., It attempts to prove that, if the preconditions are correct,
then the postconditions will be also, and if it can’t do that,
reports a verification error
A method with no “ensures” specifications has no
preconditions, so will always verify.

15 / 52

Formal methods Sorts of formal methods

Dafny verification

A programmer calling a method must ensure the preconditions
are met
(else Dafny reports an error)
A programmer writing a method may ensure the preconditions
are already true, but must ensure the postconditions are met
(else Dafny reports an error)

16 / 52

Formal methods Sorts of formal methods

Dafny live coding on the web

You can experiment with the Dafny language on the web –
https://rise4fun.com/Dafny/tutorial

17 / 52

https://rise4fun.com/Dafny/tutorial

Formal methods Sorts of formal methods

Dafny assertions

In addition to preconditions and postconditions, Dafny lets you write
assertions – these are found somewhere in the body of a method.

They assert that something is true at that point in the code (and if
Dafny can’t prove it is so, it will report an error).

18 / 52

Formal methods Sorts of formal methods

Dafny assertions

method MyMethod()

{

assert 2 < 3;

}

Assertions don’t have to mention any of the variables or return
values of a method (though obviously they are going to be more
useful if they do).

19 / 52

Formal methods Sorts of formal methods

Dafny assertions
You can think of assertions as a way of “asking” the Dafny verifier
what it knows to be true at any point in the program.

method Abs(x: int) returns (y: int)
ensures 0 <= y

{
if x < 0

{ return -x; }
else

{ return x; }
}
method MyMethod()
{
var v := Abs(-3);
assert v >= 0;

}

20 / 52

Formal methods Sorts of formal methods

Dafny verification errors

There are two main reasons you might get a verification error:
Firstly, there might be something actually incorrect with your
code.
Secondly, it might be correct, but the Dafny verifier isn’t
“clever” enough to prove that the required properties hold.

In the latter there are two main causes for Dafny verification
errors: specifications that are inconsistent with the code, and
situations where it is not “clever” enough to prove the required
properties.

21 / 52

Formal methods Sorts of formal methods

Proving loops correct

Loops pose a problem for Dafny.

To prove that the postconditions are true (assuming the
preconditions are), it needs to consider all the possible paths
through a method.

But for a loop, the verifier doesn’t know in advance how many times
the loop will be executed. There are potentially infinite paths
through the program.

22 / 52

Formal methods Sorts of formal methods

Loop invariants

The solution is to make use of loop invariants.

These are expressions that hold true

upon entering the loop
after every execution of the loop body

23 / 52

Formal methods Sorts of formal methods

Loop invariant example

Loop invariants are put just before the body of a loop:

var i := 0;
while i < n

invariant 0 <= i
{

i := i + 1;
}

24 / 52

Formal methods Sorts of formal methods

Loop invariant example

var i := 0;
while i < n

invariant 0 <= i
{

i := i + 1;
}

The verifier reasons as follows:

Is 0 <= i true before the loop starts?
Yes, since i is 0, and 0 <= 0 is true.

If the invariant was true at the start of the loop, will it also be true at the end
of the loop?

Yes, it will.
If 0 <= i at the start of the loop, all we do in the body is increment i by
1; so 0 <= i will still be true at the end of the loop.

From this, Dafny concludes that if the invariant was true before entering the
loop, it will also be true after the loop (since there’s no place it could have been
made false)

25 / 52

Formal methods Sorts of formal methods

Loop invariant applications
The example above is very simple, but we can work our way up to
more complex loops.

For instance, here is a loop that calculates m × n (though in any
modern programming language, we already have integer
multiplication):

// assume m and n are parameters, say
var tot := 0;
while m > 0
{
tot := tot + n;
m := m - 1;

}

Could we prove that, after the loop ends, tot = m × n?
26 / 52

Formal methods Sorts of formal methods

Loop invariant applications

It makes things easier if, rather than altering m and n, we leave
them as is and copy their values into other variables. Let’s write this
as a method in Dafny.

(In fact, Dafny will not let us mutate parameters.)

method MyMethod(m : int, n : int) {
var tot := 0;
var a := m; var b := n;
while a > 0
{
tot := tot + b;
a := a - 1;

}
}

27 / 52

Formal methods Sorts of formal methods

Loop invariant applications
Now we can write a postcondition in terms of m and n:

method MyMethod(m : int, n : int) returns (r: int)
ensures r == m * n

{
var tot := 0;
var a := m; var b := n;
while a > 0
{
tot := tot + b;
a := a - 1;

}
return tot;

}

This will fail, as Dafny cannot prove it is true.
28 / 52

Formal methods Sorts of formal methods

Loop invariant applications
One thing that is always true about the loop:

tot is the “total so far”
If we add the bits “still to go” (a * b) to the total, we should
get m * n.

So an invariant is a * b + tot == m * n.

method MyMethod(m : int, n : int) returns (r: int)
ensures r == m * n

{
var tot := 0;
var a := m; var b := n;
while a > 0
invariant a * b + tot == m * n
{
tot := tot + b;
a := a - 1;

}
assert tot == m * n;
return tot;

}

This will actually fail . . .

29 / 52

Formal methods Sorts of formal methods

Loop invariant applications
Because we have forgotten to deal with the possibility that m might be
negative.
If it were, we’d end up with an endless loop.

So let’s make sure m and n are non-negative.

method MyMethod(m : int, n : int) returns (r: int)
requires m >= 0 && n >= 0
ensures r == m * n

{
var tot := 0;
var a := m; var b := n;
while a > 0
invariant a * b + tot == m * n
{
tot := tot + b;
a := a - 1;

}
assert tot == m * n;
return tot;

}
30 / 52

Formal methods Sorts of formal methods

Loop invariant applications

method MyMethod(m : int, n : int) returns (r: int)
requires m >= 0 && n >= 0
ensures r == m * n

{
var tot := 0;
var a := m; var b := n;
while a > 0
invariant a * b + tot == m * n
{
tot := tot + b;
a := a - 1;

}
assert tot == m * n;
return tot;

}

Dafny will confirm that this method is correct – it understands enough basic arithmetic
to work out that the loop invariant holds before and after each loop iteration.

31 / 52

Formal methods Sorts of formal methods

Loop invariant applications

// ...
while a > 0
invariant a * b + tot == m * n
{
tot := tot + b;
a := a - 1;

}
assert tot == m * n;

}

And if the loop invariant holds in those cases, it also holds after; and since a == 0
after the loop,

→ a * b + tot == m * n
→ 0 * b + tot == m * n
→ 0 + tot == m * n
→ tot == m * n

32 / 52

Formal methods Sorts of formal methods

Power of specifications

We will not examine the Dafny language in detail, but hopefully you
can see that this technique is quite powerful.

If we can prove that small portions of code are correct (i.e., meet
their specification), and we can chain them together, then we will
be able to prove correctness of large programs.

33 / 52

Formal methods Sorts of formal methods

Example assertions

We can use postconditions, preconditions, assertions and invariants
to express:

Bounds on elements of the data:

n ≥ 0

Ordering properties of the data:

for all j : 0 ≤ j < n − 1 : aj ≤ aj+1

“Finding the maximum”

e.g. Asserting that p is the position of the maximum element in
some array a[0..n − 1]

0 ≤ p < n ∨ (for all j : 0 ≤ j < n : aj ≤ ap)

34 / 52

Formal methods Sorts of formal methods

Theory

Where we have a sequence [preconditions, code fragment,
postconditions], we call this a Hoare triple (after logician and
computer scientist Tony Hoare of Oxford, who also invented
the Quicksort algorithm, amongst other things)

35 / 52

Formal methods Sorts of formal methods

How verification works

It’s often handy to tackle a proof of correctness in two stages:
1 Prove that if the program terminates, then it produces the

results we want
2 Prove that the program terminates

Step 1 gives us what’s called “partial correctness”; and if we can
prove step 2, we have what’s called total correctness.

36 / 52

Formal methods Sorts of formal methods

Hoare logic

Hoare logic has small rules that say things like “if we have one
Hoare triple we know is correct, with precons a and postcons b, we
can combine it with another with precons b”.

Composition rule:

If we have { a } P_1 { b } and { b } P_2 { c }

then we can derive { a } $P_1; P_2$ { c }

By putting these together (which is what the Dafny verifier does),
we can prove that larger and larger fragments of code are correct.

37 / 52

Formal methods Sorts of formal methods

Worked example

Coming up with the loop invariant is usually the hard part!
Other rules can be applied in a more automatic kind of way,
which is why once we’d supplied a loop invariant, Dafny could
prove our “multiplication” example was correct.
Edsger Dijkstra said that to properly understand a while
statement is to understand its invariant.

38 / 52

Formal methods Sorts of formal methods

Sorts of formal methods

39 / 52

Formal methods Sorts of formal methods

Back to formal methods

So here, our specifications were assertions about variable values
before and after the program executed, written as
mathematical formulas.
We used a method that was partly manual – putting assertions
around fragments of code – and partly automated (the Dafny
verifier could prove many properties of code for us)
Some bits of that could be partly automated – the rules for
composition and assignment could be done by machine
The loop invariant, however, requires ingenuity to come up with
Our model of the system was, in fact, the code itself.

(The code is still just a model, a simplification, of the actual
running binary. It isn’t itself the binary.
We also might ignore such things as limits on sizes of ints, if we
are happy to accept that our proof only applies, if the ints are
sufficiently small.)

40 / 52

Formal methods Sorts of formal methods

Categorizing formal methods

We can categorize formal methods in various ways . . .

41 / 52

Formal methods Sorts of formal methods

Categorizing formal methods

Degree of formality:

how formal are the specifications and the system description?
in natural language (informal), or something more
mathematical?

42 / 52

Formal methods Sorts of formal methods

Categorizing formal methods

Degree of automation:

the extremes are fully automatic and fully manual
most computer-aided methods are somewhere in the middle

43 / 52

Formal methods Sorts of formal methods

Categorizing formal methods

Full or partial verification of properties in the specification

What is being verified about the system? Just one property?
(e.g., that it does not deadlock, say – common for concurrent
systems)
Or many/all properties?

(This is usually very expensive, in terms of effort)

44 / 52

Formal methods Sorts of formal methods

Categorizing formal methods

Intended domain of application:

e.g. hardware vs software;
reactive vs terminating;

reactive systems run a theoretically endless “loop” and aren’t
intended to terminate – they just keep reacting to an
environment
e.g. operating systems, embedded hardware (modelled with
state machines, often)
terminating systems terminate, usually with some sort of result

sequential vs concurrent

45 / 52

Formal methods Sorts of formal methods

Categorizing formal methods

pre- vs post-development:

Is verification done early in development, vs later or afterwards?
Earlier is obviously better, since things are much more
expensive to fix if early, if it turns out our system doesn’t meet
the specs

46 / 52

Formal methods Sorts of formal methods

Categorizing formal methods

But sometimes the system comes first, then the verification
Often true for programming languages . . .

e.g. Java was released in 1995, and in 1997, a machine-checked
proof of “type soundness” of a subset of Java was proved.1
But: later versions of Java (from 5 onwards) turned out to have
unsound type systems in various ways. Oops.
The interaction of sub-typing and inheritance turned out to
make the early OO language Eiffel unsound. Also oops.2

1Syme. “Proving Java Type Soundness”. 1997 [pdf]
2William R. Cook. A proposal for making Eiffel type-safe. The Computer

Journal, 32(4):305–311, August 1989.
47 / 52

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/java.pdf

Formal methods Sorts of formal methods

Categorizing formal methods

Are we trying to prove properties of an individual program? Or
about all programs written in a particular language?

An example of the first one is proving that a sorting function
does what we want it to, or that a compiler implementation
obeys some particular formal specification

An example of the latter is proving results about the type
system for a language, which lets us show that all programs in
the language will have some sort of guarantees of good
behaviour

e.g. Proving that well-typed Java programs cannot be subverted
(assuming the JVM and compiler are implemented correctly) –
it should be impossible to get a reference which doesn’t point
to a valid area of memory, for instance.

48 / 52

Formal methods Sorts of formal methods

Aside – type systems

We often don’t think of type systems as being a “formal
method”, but some type systems are very expressive, and allow
us to prove quite strong results about our programs
We can use them to prove that (for instance) unsanitized user
data never gets output to a web page

49 / 52

Formal methods Sorts of formal methods

Type systems

A type system many of us will have used in high school: consistency
of SI units
We can multiply and divide things which have different units
(e.g. distance divided by time, or acceleration multiplied by time) . . .
. . . but it makes no physical sense to add things with different units –
we can’t add seconds to metres – and the rules for consistency of SI
units stop us from doing so, thus avoiding silly mistakes.
In most programming languages: floating point numbers are used for
all physical quantities – nothing to stop you adding a number
representing seconds to one representing distance.
Some languages (e.g. Fortress, F#) have dimensionality and unit
checking built into the language –
useful if coding something with a lot of physical quantities and want
checks you haven’t performed a physically nonsensical calculation.

50 / 52

https://github.com/stokito/fortress-lang
https://fsharp.org/

Formal methods Sorts of formal methods

Categorizing formal methods

Model-based vs proof-based approaches:

We’ve seen one example of a proof based approach, Hoare
logic.

Your specification is some formula in some suitable logic
In Hoare logic, our specification is what we want the program to
do – it’s expressed as assertions (postconditions which should
hold after the program executes, if the preconditions held)
You try and prove that the system (or some abstraction of it)
satisfies the specification.

Usually requires guidance and expertise from the user

51 / 52

Formal methods Sorts of formal methods

Categorizing formal methods

Model-based approaches:

Again, our specification is some sort of formula
This time, our system description is some mathematical
structure, a model,M
We check whether the modelM satisfies the specification
(i.e. has the properties we want)
In many cases, this can be done automatically.

52 / 52

	Formal methods
	Sorts of formal methods

