CITS5501 Software Testing and Quality
Assurance
Formal methods

Unit coordinator: Arran Stewart

1/52



Formal methods
©000000000000000000000000000000000000

Formal methods

2/52



Formal methods
0@00000000000000000000000000000000000

Sources

Some useful sources, for more information:

@ Pressman, R., Software Engineering: A Practitioner’s Approach,
McGraw-Hill, 2005

@ Huth and Ryan, Logic in Computer Science

o Pierce et al, Software Foundations vol 1

3/52


https://softwarefoundations.cis.upenn.edu/lf-current/Preface.html

Formal methods
00®0000000000000000000000000000000000

Overview

@ When doing software engineering — specifying and developing
software systems — the activities done can be done with varying
levels of mathematical rigor.

o For instance, we could write a requirement

o informally, just using natural language, and perhaps tables and
diagrams. This is easy, but can be imprecise and ambiguous
(and hard to spot when that has occurred)

o semi-formally, perhaps using occasional mathematical formulas
or bits of pseudocode to express what's required

o mostly using mathematical notation, with a bit of English to
clarify what the notation represents. This is typically a lot more
work, and it can be harder to ensure the notation matches our
intuitive idea of whhat the system should do, but has little or no
vagueness or ambiguity.

4/52



Formal methods
000®000000000000000000000000000000000

Overview (2)

@ Things towards the “more formal” side of this spectrum will
tend to get called “lightweight formal methods” or “formal
methods”.

5/52



Formal methods
0000®00000000000000000000000000000000

Definitions

Formal methods used in developing computer systems are
mathematically based techniques for describing system
properties. Such formal methods provide frameworks within
which people can specify, develop, and verify systems in a
systematic, rather than ad hoc manner.

— Encyclopedia of Software Engineering [Mar01]

Problems with conventional specs:

© ©6 6 06 o

contradictions

ambiguities

vagueness

incompleteness

mixed levels of abstraction

6/52



Formal methods
00000@0000000000000000000000000000000

A typical approach

Often, we'll apply formal methods in the following way:

o We'll have some specification — some property that we want
our system to have
o e.g., that it calculates the factorial of a natural number; or
never gets deadlocked; or has certain security properties.
@ And we'll have something representing the system — this is
called a model
o This could be actual code, or it could be annotated code, or it
could be some more abstract model of the system (like state
machines, which we have seen earlier)
o And we will try to show that the model meets the specification.

7/52



Formal methods
000000e000000000000000000000000000000

Rationale

@ Why use formal methods?

o Building reliable software is hard.
o Software systems can be hugely complex, and knowing exactly
what a system is doing at any point of time is likewise hard.

@ So computer scientists and software engineers have come up
with all sorts of techniques for improving reliability (many of
which we've seen) — testing, risk management, quality controls,
maths-based techniques for reasoning about the properties of

software
o And this last sort of technique is what we call formal methods.

8/52



Formal methods
0000000800000000000000000000000000000

Rationale

o By reasoning about the properties of software — i.e., proving
things about it — we can get much greater certainty that our
programs are reliable and error-free, than we can through
testing

o Testing is a sort of empirical investigation — we go out and
check whether we can find something (bugs, in this case)

o But if we don't find it, that doesn't mean that whatever we
were looking for doesn't exist — we may not have looked hard

enough or in the right places.
o (People once thought it was an eternal and obvious truth that
there weren't such things as black swans, but it turned out they

weren't looking in the right places.)

9/52



Formal methods
0000000080000 000000000000000000000000

Program verification

@ Proofs of correctness use techniques from formal logic to prove
that if the starting state (i.e., “input” variables) of a program
satisfies particular properties, than the end state after
executing a program (i.e., “output” variables) satisfies some
other properties.

@ The first lot of properties are called preconditions (assertions
that hold prior to execution of a piece of code), and the second
lot are postconditions (assertions that hold after execution)

10/52



Formal methods
000000000e000000000000000000000000000

Example

By way of example, we'll use fragments of code from the Dafny
programming language.

It is somewhat similar in style to Java or C#, but includes built-in
features for program verification.

To write a method Abs () which calculates the absolute value of an
integer, we woud write code something like this:

method Abs(x: int) returns (y: int) {
if x < 0
{ return -x; }
else
{ return x; }

11/52


https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

Formal methods
0000000000e00000000000000000000000000

Dafny code

One difference from Java is that the return value is given its own

name, “y".

method Abs(x: int) returns (y: int) {
if x < 0
{ return -x; }
else
{ return x; }

12/52



Formal methods
00000000000e0000000000000000000000000

Dafny postconditions

Why is this? It's because we can add postconditions to Dafny code,
which refer to the return value (or to input parameters, as well), so
it's convenient to give it a name.

method Abs(x: int) returns (y: int)
ensures 0 <=y

o Multiple “ensures” specifications can be added

o “ensures” specifications can make use of the ususal logical
connectives (e.g. "&&", “|]")

o The suggested style is for distinct “properties” to be given their

own ensures speC|f|cat|on 13/52



Formal methods
000000000000e000000000000000000000000

Dafny preconditions

Preconditions can be specified with keyword “requires”

method AddOne(x: int) returns (y: int)
requires x > 0
ensures y > 0

return x + 1;

14/52



Formal methods
0000000000000 e00000000000000000000000

Dafny verification

o Dafny will actually reject programs with postconditions it can't

prove are correct.
o i.e., It attempts to prove that, if the preconditions are correct,
then the postconditions will be also, and if it can't do that,

reports a verification error
o A method with no “ensures” specifications has no
preconditions, so will always verify.

15/52



Formal methods
00000000000000e0000000000000000000000

Dafny verification

o A programmer calling a method must ensure the preconditions
are met
(else Dafny reports an error)

o A programmer writing a method may ensure the preconditions
are already true, but must ensure the postconditions are met
(else Dafny reports an error)

16 /52



Formal methods
000000000000000®000000000000000000000

Dafny live coding on the web

You can experiment with the Dafny language on the web —
https://rise4fun.com/Dafny/tutorial

17/52


https://rise4fun.com/Dafny/tutorial

Formal methods
0000000000000000e00000000000000000000

Dafny assertions

In addition to preconditions and postconditions, Dafny lets you write
assertions — these are found somewhere in the body of a method.

They assert that something is true at that point in the code (and if
Dafny can't prove it is so, it will report an error).

18/52



Formal methods
00000000000000000e0000000000000000000

Dafny assertions

method MyMethod()
{

assert 2 < 3;

Assertions don't have to mention any of the variables or return
values of a method (though obviously they are going to be more
useful if they do).

19/52



Formal methods
000000000000000000e000000000000000000

Dafny assertions

You can think of assertions as a way of “asking” the Dafny verifier
what it knows to be true at any point in the program.

method Abs(x: int) returns (y: int)
ensures 0 <=y

{
if x <0
{ return -x; }
else
{ return x; }
}
method MyMethod ()
{

var v := Abs(-3);
assert v >= 0;

}

v
20 /52



Formal methods
0000000000000000000e00000000000000000

Dafny verification errors

@ There are two main reasons you might get a verification error:

o Firstly, there might be something actually incorrect with your
code.

o Secondly, it might be correct, but the Dafny verifier isn't
“clever” enough to prove that the required properties hold.

@ In the latter there are two main causes for Dafny verification
errors: specifications that are inconsistent with the code, and
situations where it is not “clever” enough to prove the required
properties.

21/52



Formal methods
00000000000000000000e0000000000000000

Proving loops correct

Loops pose a problem for Dafny.

To prove that the postconditions are true (assuming the
preconditions are), it needs to consider all the possible paths
through a method.

But for a loop, the verifier doesn't know in advance how many times
the loop will be executed. There are potentially infinite paths
through the program.

22 /52



Formal methods
000000000000000000000e000000000000000

Loop invariants

The solution is to make use of loop invariants.
These are expressions that hold true

@ upon entering the loop
o after every execution of the loop body

23 /52



Formal methods
0000000000000000000000e00000000000000

Loop invariant example

Loop invariants are put just before the body of a loop:

var i := 0;
while i < n
invariant 0 <= i

24 /52



Formal methods
00000000000000000000000e0000000000000

Loop invariant example

var i := 0;
while i < n
invariant 0 <= 1

i:=1+ 1;

The verifier reasons as follows:

@ Is 0 <= i true before the loop starts?
@ Yes, since i is 0, and 0 <= 0 is true.
@ /f the invariant was true at the start of the loop, will it also be true at the end
of the loop?
@ Yes, it will.
If @ <= i at the start of the loop, all we do in the body is increment i by
1; so 0 <= i will still be true at the end of the loop.
@ From this, Dafny concludes that if the invariant was true before entering the
loop, it will also be true after the loop (since there's no place it could have been
made false)

25 /52



Formal methods
000000000000000000000000e000000000000

Loop invariant applications

The example above is very simple, but we can work our way up to
more complex loops.

For instance, here is a loop that calculates m x n (though in any
modern programming language, we already have integer
multiplication):

// assume m and n are parameters, say
var tot := 0;
while m > 0
{
tot := tot + n;
m:=m - 1;

Could we prove that, after the loop ends, tot = m x n?
26 /52



Formal methods
0000000000000000000000000e00000000000

Loop invariant applications

It makes things easier if, rather than altering m and n, we leave
them as is and copy their values into other variables. Let's write this
as a method in Dafny.

(In fact, Dafny will not /et us mutate parameters.)

method MyMethod(m : int, n : int) {
var tot := 0;
var a :=m; var b := n;
while a > 0
{
tot := tot + b;
a :=a - 1;
}
}

27 /52



Formal methods
00000000000000000000000000e0000000000

Loop invariant applications

Now we can write a postcondition in terms of m and n:

method MyMethod(m : int, n : int) returns (r: int)
ensures r ==m * n
{
var tot := 0;
var a :=m; var b := n;
while a > 0
{
tot := tot + b;
a:=a - 1;
}
return tot;
h

This will fail, as Dafny cannot prove it is true.
28 /52



Formal methods
000000000000000000000000000e000000000

Loop invariant applications

One thing that is always true about the loop:

o tot is the “total so far”
o If we add the bits “still to go” (a * b) to the total, we should
getm * n.

So an invariantisa * b + tot == m % n.

method MyMethod(m : int, n : int) returns (r: int)
ensures r ==m % n
{
var tot := 0;
var a :=m; var b := n;
while a > 0
invariant a *x b + tot == m *x n
{
tot := tot + b;
a:=a - 1;

29/52



Formal methods
0000000000000000000000000000e00000000

Loop invariant applications

Because we have forgotten to deal with the possibility that m might be
negative.
If it were, we'd end up with an endless loop.

So let’'s make sure m and n are non-negative.

method MyMethod(m : int, n : int) returns (r: int)
requires m >= 0 & n >= 0
ensures r ==m * n
{
var tot := 0;
var a :=m; var b := n;
while a > 0
invariant a * b + tot == m *x n
{
tot := tot + b;
a:=a-1;
}
assert tot == m * n;
return tot;
¥ 0 /52




Formal methods
00000000000000000000000000000e0000000

Loop invariant applications

method MyMethod(m : int, n : int) returns (r: int)
requires m >= 0 & n >= 0
ensures r == m * n
{
var tot := 0;
var a :=m; var b := n;
while a > 0
invariant a * b + tot ==m *x n
{
tot := tot + b;
a:=a-1;
}
assert tot == m * n;
return tot;
}
.

Dafny will confirm that this method is correct — it understands enough basic arithmetic
to work out that the loop invariant holds before and after each loop iteration.

31/52



Formal methods
000000000000000000000000000000e000000

Loop invariant applications

/...
while a > 0
invariant a * b + tot == m *x n
{
tot := tot + b;
a:=a-1;
}

assert tot == m * n;

And if the loop invariant holds in those cases, it also holds after; and since a ==
after the loop

a*xb+ tot =m=x*n
— 0 x b+ tot ==m *xn

— 0 + tot ==m xn
— tot ==m x n

32/52



Formal methods
0000000000000000000000000000000e00000

Power of specifications

We will not examine the Dafny language in detail, but hopefully you
can see that this technique is quite powerful.

If we can prove that small portions of code are correct (i.e., meet
their specification), and we can chain them together, then we will
be able to prove correctness of large programs.

33/52



Formal methods
00000000000000000000000000000000e0000

Example assertions

We can use postconditions, preconditions, assertions and invariants
to express:

o Bounds on elements of the data:

n>0
o Ordering properties of the data:

forall j:0<j<n—1:a<aj1
o "“Finding the maximum”

e.g. Asserting that p is the position of the maximum element in
some array a[0..n — 1]

0<p<nV(forallj:0<j<n:a <ap)

34/52



Formal methods
000000000000000000000000000000000e000

Theory

o Where we have a sequence [ preconditions, code fragment,
postconditions |, we call this a Hoare triple (after logician and
computer scientist Tony Hoare of Oxford, who also invented
the Quicksort algorithm, amongst other things)

35/52



Formal methods
0000000000000000000000000000000000e00

How verification works

It's often handy to tackle a proof of correctness in two stages:

Q Prove that if the program terminates, then it produces the
results we want
Q Prove that the program terminates

Step 1 gives us what's called “partial correctness”; and if we can
prove step 2, we have what's called total correctness.

36 /52



Formal methods
00000000000000000000000000000000000e0

Hoare logic

Hoare logic has small rules that say things like “if we have one
Hoare triple we know is correct, with precons a and postcons b, we
can combine it with another with precons b".

Composition rule:

If we have { $a$ } $P_1$ { $b$ } and { $b$ } $P_2% { $c$ }
then we can derive { $a$ } $P_1; P_2$ { $c$ }

By putting these together (which is what the Dafny verifier does),
we can prove that larger and larger fragments of code are correct.

37/52



Formal methods
000000000000000000000000000000000000e

Worked example

o Coming up with the loop invariant is usually the hard part!

@ Other rules can be applied in a more automatic kind of way,
which is why once we'd supplied a loop invariant, Dafny could
prove our “multiplication” example was correct.

o Edsger Dijkstra said that to properly understand a while
statement is to understand its invariant.

38/52



Sorts of formal methods
©0000000000000

Sorts of formal methods

39/52



Sorts of formal methods
0®000000000000

Back to formal methods

o So here, our specifications were assertions about variable values
before and after the program executed, written as
mathematical formulas.

o We used a method that was partly manual — putting assertions
around fragments of code — and partly automated (the Dafny
verifier could prove many properties of code for us)

@ Some bits of that could be partly automated — the rules for
composition and assignment could be done by machine

o The loop invariant, however, requires ingenuity to come up with

o Our model of the system was, in fact, the code itself.
o (The code is still just a model, a simplification, of the actual
running binary. It isn't itself the binary.
We also might ignore such things as limits on sizes of ints, if we
are happy to accept that our proof only applies, if the ints are
sufficiently small.)

40/52



Sorts of formal methods
00®00000000000

Categorizing formal methods

@ We can categorize formal methods in various ways ...

41/52



Sorts of formal methods
000®0000000000

Categorizing formal methods

Degree of formality:

o how formal are the specifications and the system description?
@ in natural language (informal), or something more
mathematical?

42/52



Sorts of formal methods
0000®000000000

Categorizing formal methods

Degree of automation:

o the extremes are fully automatic and fully manual
@ most computer-aided methods are somewhere in the middle

43/52



Sorts of formal methods
00000®00000000

Categorizing formal methods

Full or partial verification of properties in the specification

@ What is being verified about the system? Just one property?
(e.g., that it does not deadlock, say — common for concurrent
systems)

o Or many/all properties?
o (This is usually very expensive, in terms of effort)

44 /52



Sorts of formal methods
000000@0000000

Categorizing formal methods

Intended domain of application:

o e.g. hardware vs software;
@ reactive vs terminating;
o reactive systems run a theoretically endless “loop” and aren't
intended to terminate — they just keep reacting to an

environment
o e.g. operating systems, embedded hardware (modelled with

state machines, often)
o terminating systems terminate, usually with some sort of result

@ sequential vs concurrent

45/52



Sorts of formal methods
0000000e000000

Categorizing formal methods

pre- vs post-development:

o Is verification done early in development, vs later or afterwards?
o Earlier is obviously better, since things are much more

expensive to fix if early, if it turns out our system doesn’t meet
the specs

46 /52



Sorts of formal methods
00000000®00000

Categorizing formal methods

o But sometimes the system comes first, then the verification
o Often true for programming languages ...
o e.g. Java was released in 1995, and in 1997, a machine-checked
proof of “type soundness” of a subset of Java was proved.!
o But: later versions of Java (from 5 onwards) turned out to have
unsound type systems in various ways. Oops.
o The interaction of sub-typing and inheritance turned out to
make the early OO language Eiffel unsound. Also oops.?

!Syme. “Proving Java Type Soundness”. 1997 [pdf]
2William R. Cook. A proposal for making Eiffel type-safe. The Computer

Journal, 32(4):305-311, August 1989.
47/52


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/java.pdf

Sorts of formal methods
000000000 e0000

Categorizing formal methods

Are we trying to prove properties of an individual program? Or
about all programs written in a particular language?

@ An example of the first one is proving that a sorting function
does what we want it to, or that a compiler implementation
obeys some particular formal specification

@ An example of the latter is proving results about the type
system for a language, which lets us show that all programs in
the language will have some sort of guarantees of good
behaviour

o e.g. Proving that well-typed Java programs cannot be subverted
(assuming the JVM and compiler are implemented correctly) —
it should be impossible to get a reference which doesn't point
to a valid area of memory, for instance.

48/52



Sorts of formal methods
0000000000e000

Aside — type systems

o We often don't think of type systems as being a “formal
method”, but some type systems are very expressive, and allow
us to prove quite strong results about our programs

o We can use them to prove that (for instance) unsanitized user
data never gets output to a web page

49/52



Sorts of formal methods
0000000000000

Type systems

("]

(*]

A type system many of us will have used in high school: consistency

of Sl units

We can multiply and divide things which have different units

(e.g. distance divided by time, or acceleration multiplied by time) ...
. but it makes no physical sense to add things with different units —

we can't add seconds to metres — and the rules for consistency of SI

units stop us from doing so, thus avoiding silly mistakes.

In most programming languages: floating point numbers are used for

all physical quantities — nothing to stop you adding a number

representing seconds to one representing distance.

Some languages (e.g. Fortress, F#) have dimensionality and unit

checking built into the language —

useful if coding something with a lot of physical quantities and want

checks you haven't performed a physically nonsensical calculation.

50 /52


https://github.com/stokito/fortress-lang
https://fsharp.org/

Sorts of formal methods
0000000000000

Categorizing formal methods

Model-based vs proof-based approaches:

o We've seen one example of a proof based approach, Hoare
logic.
o Your specification is some formula in some suitable logic
o In Hoare logic, our specification is what we want the program to
do — it's expressed as assertions (postconditions which should
hold after the program executes, if the preconditions held)
o You try and prove that the system (or some abstraction of it)
satisfies the specification.
@ Usually requires guidance and expertise from the user

51/52



Sorts of formal methods
0000000000000e

Categorizing formal methods

Model-based approaches:

@ Again, our specification is some sort of formula

o This time, our system description is some mathematical
structure, a model, M

o We check whether the model M satisfies the specification
(i.e. has the properties we want)

@ In many cases, this can be done automatically.

52 /52



	Formal methods
	Sorts of formal methods

