IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008 851

FlexiTP: A Flexible-Schedule-Based TDMA
Protocol for Fault-Tolerant and Energy-Efficient
Wireless Sensor Networks

Winnie Louis Lee, Amitava Datta, Member, IEEE, and Rachel Cardell-Oliver

Abstract—FlexiTP is a novel TDMA protocol that offers a synchronized and loose slot structure. Nodes in the network can build,
modify, or extend their scheduled number of slots during execution, based on their local information. Nodes wake up for their
scheduled slots; otherwise, they switch into power-saving sleep mode. This flexible schedule allows FlexiTP to be strongly fault
tolerant and highly energy efficient. FlexiTP is scalable for a large number of nodes because its depth-first-search schedule minimizes
buffering, and it allows communication slots to be reused by nodes outside each other’s interference range. Hence, the overall scheme
of FlexiTP provides end-to-end guarantees on data delivery (throughput, fair access, and robust self-healing) while also respecting the
severe energy and memory constraints of wireless sensor networks. Simulations in ns-2 show that FlexiTP ensures energy efficiency
and is robust to network dynamics (faults such as dropped packets and nodes joining or leaving the network) under various network
configurations (network topology and network density), providing an efficient solution for data-gathering applications. Furthermore,
under high contention, FlexiTP outperforms Z-MAC in terms of energy efficiency and network performance.

Index Terms—Wireless sensor networks, energy efficiency, memory efficiency, end-to-end data delivery guarantees.

1 INTRODUCTION

WIRELESS sensor networks are used to gather informa-
tion in diverse settings including natural ecosystems,
battlefields, and man-made environments [1], [2]. Networks
in these environments need to be able to self-configure and,
ideally, to self-calibrate, without knowing anything of the
network topology or sensor requirements in advance.
Sensor nodes are typically powered by batteries, and the
cost of replacing these batteries is expensive. It is desirable
to prolong the lifetime of a network by minimizing energy
consumption in sensor network operations. Furthermore,
the users of sensor networks need end-to-end guarantees on
data delivery [3], [4]: predictable throughput for gathered
data, fair access to the network for all data-gathering nodes,
and robust self-healing of the network when nodes join or
leave the network and when communication conditions
change [5], [6], [7]. In practice, however, it has proved
difficult to achieve these guarantees, because of the severe
resource constraints (battery power and data memory) of
sensor network nodes and the hostile environments in
which they must operate [8]. In addition to minimizing
network resources while maintaining end-to-end delivery
guarantees, modularity in sensor network designs is
important. Most sensor network protocols focus on perfor-
mance while addressing issues such as scheduling, routing,

o The authors are with the School of Computer Science and Software
Engineering, University of Western Australia, Crawley WA 6009,
Australia. E-mail: {winnie, datta, rachel }J@csse.uwa.edu.au.

Manuscript received 13 Apr. 2007; revised 18 July 2007; accepted 16 Aug.
2007; published online 12 Sept. 2007.

Recommended for acceptance by M. Ould-Khaoua.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-04-0112.
Digital Object Identifier no. 10.1109/TPDS.2007.70774.

1045-9219/08/$25.00 © 2008 IEEE

data buffering, and power management at different levels
[9], [10]. These observations lead to the design of a flexible-
schedule-based TDMA Protocol (FlexiTP) that provides
end-to-end guarantees on data delivery while also respect-
ing the severe energy and memory constraints of wireless
sensor networks.

FlexiTP is a self-healing protocol designed for periodic
data-gathering applications. Data-gathering sensor nodes
sense their environment periodically at a fixed rate and
deliver data to a base station [11]. Sensor nodes serve as
both gatherers and routers for the data. FlexiTP supports
modularity through a distributed slot-structure algorithm
that provides scheduling, routing, and time synchroniza-
tion functions. FlexiTP is a TDMA-based protocol in
which nodes only transmit and receive packets at their
own time slot(s) and sleep until their slots turn up again.
This approach conserves energy as nodes in sleep mode
consume much less energy than those in idle mode [12].
FlexiTP nodes require minimal local buffering since the
network schedule is chosen so that each node forwards
messages immediately. FlexiTP is designed for a static
ad hoc network, in which nodes may suffer temporary or
permanent failure, and new nodes may be added to the
network at any time, but nodes otherwise remain in
(nearly) the same location. FlexiTP adjusts to different
node topologies and densities to create an efficient self-
healing data delivery tree. Furthermore, buffering and
retransmission are used to recover from a small number
of lost packets.

The central contribution of the FlexiTP protocol is its
synchronized and loose slot structure. Nodes can claim or
remove a slot based on the current information in their
lookup table (that is, schedule) without exchanging
information with any other nodes in the network prior to

Published by the IEEE Computer Society

852 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

modifying their schedules. The node lookup table provides
information for scheduling, routing, and time synchroniza-
tion purposes [13]. In FlexiTP, it is not necessary to specify
the number of slots required for the network in advance,
and nodes can join or leave the network at any time. This
flexible slot structure makes FlexiTP strongly fault tolerant
and also highly energy efficient. In FlexiTP, initially, all
nodes in a network build their data-gathering schedules.
After this initial global one-off setup phase, all repair
operations are local. As network density increases, the
initial network setup cost and packet latency increase. Our
simulations based on Mica2 Mote hardware show that
FlexiTP is scalable for a large number of nodes (up to
400 nodes) because it sustains the low initial network setup
cost and low packet latency, as well as maintains good
throughput for different network densities.

FlexiTP achieves a balance among data delivery guaran-
tees, energy efficiency, and memory efficiency through the
following schemes:

e FlexiTP maximizes the network lifetime by putting
nodes into sleep mode without disrupting the
ongoing traffic and fairly distributing energy-
intensive operations across the network.

e FlexiTP is scalable for large numbers of network nodes
because 1) local repair is used to recover from node
and communication failures, 2) nodes minimize
buffered information, and 3) communication slots
are reused by nodes outside each other’s interference
range.

e FlexiTP provides data delivery guarantees because
1) scheduled communication is used to minimize
communication errors from radio interference and to
guarantee a communication path for each node and
2) local repair is used to recover from node and
communication faults.

The rest of the paper is organized as follows: We discuss
some related work in Section 2. We describe our FlexiTP
approach in Section 3. Section 4 describes our simulation
methodology and presents our simulation results. We
conclude with some discussion and present future work
in Section 5.

2 RELATED WORK

Miller and Vaidya [14] propose a MAC protocol that
addresses end-to-end guarantees on data delivery in terms
of memory and energy efficiency. The protocol uses a second
low-power radio to allow senders to wake receivers if a
specified number of packets are buffered, and so, a buffer
overflow can be avoided. The protocol also determines an
optimal period of the wake-up to minimize energy con-
sumption. The protocol in [15] uses the base station to adjust
the modulation level (bits per symbol) of each cluster head in
a network based on the cluster head’s feedback in order to
make a good trade-off between energy consumption and
transmission quality. The major drawbacks of this protocol
are the queuing process at cluster heads and the centralized
decision making. The number of packets arriving at cluster
heads is not controlled, and so, packets will be dropped if
the buffer overflows, resulting in increased latency and
packet loss. The two protocols proposed in [14] and [15] that

did address end-to-end guarantees on data delivery issues in
wireless sensor networks were different from our approach
as they used a two-radio architecture. Even though a direct
comparison between the performance of FlexiTP and these
protocols has been performed, the different objectives
between FlexiTP and these protocols makes this direct
comparison difficult.

Several researchers have already shown extensive solu-
tions for achieving energy-efficient protocols based on
CSMA [10], [16], [17], [18], [19], TDMA [20], [21], [22], [23],
[24], [25], [26], or both [27], [28], [29]. Their focus is to
minimize sources of energy waste: idle listening, over-
hearing, collisions, and protocol overhead. FlexiTP is dis-
tinguished from previous protocols by providing end-to-end
guarantees on data delivery within the energy and memory
constraints of wireless sensor networks.

S-MAC [17] and T-MAC [18] use the CSMA technique
and an RTS/CTS handshake in an attempt to avoid
collisions. However, the overhead of RTS/CTS is high for
typically small-sized data packets in sensor networks [28].
In S-MAC, a node that has more data to send can
monopolize the wireless radio channel. This is unfair for
other nodes that have short packets to send but need to wait
for the completion of the transmission of the long packet. In
contrast, the FlexiTP TDMA scheme guarantees fair access
since no node can monopolize the medium and nodes have
their own slots for transmission.

EAD [19] provides energy efficiency by rotating nodes in
the network to act as backbone sensors, based on their
residual energy. These backbone sensors are responsible for
in-network data processing and packet routing, whereas the
rest of nodes in the network sleep to conserve energy. This
scheme provides high energy savings for event-driven
applications where nodes only report events upon their
detection. In contrast to EAD, FlexiTP is designed for
periodic sensing applications, where each node has data
to send at regular intervals. EAD uses CSMA/CA for
data transmission, whereas FlexiTP eliminates RTS/CTS
handshakes during data gathering, and this results in a
low packet overhead. Similar to EAD, FlexiTP uses a
forwarding-to-parent routing scheme where a tree is
constructed at the initial network setup, and so, every node
in the network knows where to route its packet during
sensor network execution. This simple routing scheme is
suitable for static sensor networks since it sustains high
throughput and good energy efficiency [19].

TDMA-based protocols guarantee collision-free commu-
nication by scheduling slots for each node. TDMA protocols
reduce idle listening, and this results in significant energy
savings. The main challenges of this scheme are determin-
ing the collision-free slots to be assigned to nodes in
multiple-hop networks [30], the overheads to set up and
distribute a schedule through the network [16], and
accurate time synchronization so that the nodes’ time slots
do not overlap [31]. Examples of TDMA-based MAC
protocols are TRAMA [24], L-MAC [20], SS-TDMA [21],
the protocol by Arisha et al. [22], and PACT [23].

TRAMA [24] organizes time into frames and uses a
distributed election scheme based on traffic information at
each node to determine which node can transmit at a
particular slot. TRAMA uses a distributed hash function to
determine a collision-free slot assignment. TRAMA builds a
schedule when a node has data to send. This random

LEE ET AL.: FLEXITP: A FLEXIBLE-SCHEDULE-BASED TDMA PROTOCOL FOR FAULT-TOLERANT AND ENERGY-EFFICIENT WIRELESS... 853

scheduling scheme increases queuing delays. In contrast,
FlexiTP reduces queuing delays as schedules are assigned
to nodes at the time of the initial network setup and nodes
maintain this schedule throughout their lifetime. In this
way, FlexiTP also avoids the need for a centralized
scheduler. In addition, FlexiTP has a simpler algorithm to
establish a schedule compared to TRAMA.

L-MAC [20] divides time into slots with a fixed frame
consisting of a control message and a data unit. The main
drawback of the L-MAC scheme is that it increases the
idle-listening overhead since nodes must always listen to
the control sections of all slots in a frame to allow nodes
to receive data and to allow new nodes to join the
network anytime. In B-MAC [10], each node also must
listen to all control messages of its neighboring nodes to
determine whether it is the intended receiver of the packet
before going back to sleep. FlexiTP provides superior
energy efficiency to L-MAC because nodes are only active
in their own time slots, and so, no energy is wasted in idle
listening.

SS-TDMA [21] is designed to operate on a regular grid
topology such as rectangular, hexagonal, and triangular
grids. The TDMA algorithm proposed in SS-TDMA is self-
stabilizing. It tolerates faults such as nodes that are
improperly initialized, slots assigned to corrupted nodes,
and nodes with clock drifts. The main drawback of
SS-TDMA is its constraint on the location of the nodes,
which is impractical for many sensor network applications.
Unlike SS-TDMA, FlexiTP caters to any network topology.

In the protocol by Arisha et al. [22], each cluster head in
the network sends traffic and battery-level information from
the nodes in its cluster to the base station. Based on this
information, the base station builds a schedule (transmis-
sion and sleep) for nodes within each cluster. This approach
is not scalable as cluster heads need to communicate
directly with the base station. Furthermore, the protocol
uses a fixed-length TDMA frame and, so, the maximum
number of nodes must be known before deployment. In
contrast, the FlexiTP slot structure can be changed dyna-
mically during the runtime of the application.

PACT [23] uses passive clustering to create a commu-
nication network of cluster heads and base stations. The role
of cluster heads and base stations is rotated based on the
nodes’ energy level. To prolong the network lifetime, only a
subset of nodes (cluster heads and base stations) are active.
At the start of a TDMA frame, these active nodes get
preference in claiming a sequence of communication slots.
PACT rotates the role of cluster heads to amortize the
overheads of the TDMA scheduler. However, this method
requires the cluster heads to rebuild a schedule for all nodes
within their clusters. Unlike PACT, FlexiTP nodes maintain
a fixed schedule throughout their lifetime until the network
topology changes.

Z-MAC [28] is a hybrid MAC protocol that starts off as
CSMA and switches to TDMA if the network load increases.
Nodes execute a distributed slot selection algorithm to get a
TDMA slot. When a node has data to send, it listens to all
slots to check if its neighbors need to send data. If the node
is the slot owner, it randomly backs off for a period of time
and proceeds with sending its data if the medium is clear.
The owner of a slot has a higher priority than nonowners.

The owner uses its slot only if it has data to send; otherwise,
it allows other nodes to use its slot. When multiple nodes
within a subnetwork attempt to send messages at the same
time, collisions often occur due to hidden terminals. In such
high-contention networks, Z-MAC uses explicit congestion
notification (ECN) messages to limit the occurrence of
hidden terminals. When a sender detects heavy traffic load,
it broadcasts the ECN message to its direct neighbors. These
direct neighbors further propagate the ECN message to
their neighbors; hence, nodes in a two-hop neighborhood of
the sender get notified of the ongoing traffic. These
neighbors then can only attempt to transmit a message
during the scheduled slot of itself and its direct neighbors.
These neighbors resume their previous states when they
receive no more ECN messages. Similar to Z-MAC, FlexiTP
performs a time slot assignment once at the initial network
setup. This high initial overhead can be amortized over the
network lifetime and eventually balanced by improved
throughput and energy efficiency [28]. We compare the
performance of FlexiTP with Z-MAC in Section 4.3.

3 FLEXITP

3.1 Protocol Overview
The main functions of FlexiTP are to manage

e the establishment of routes (data-gathering tree
construction),

e the establishment of node schedules (time slot
assignment),

e time synchronization to minimize clock drifts, and

e local repair for a network in the event of faults (fault
tolerance).

FlexiTP has two main phases: an initial network setup
and data-gathering cycles. Fig. 1 shows the order of steps
executed in a network. Users can implement any data-
gathering tree construction algorithm; the time slot assign-
ment is the important feature of FlexiTP. Some steps within
phases are carried out in parallel by the nodes, which are
the neighbor schedule exchange and the fault-tolerant
schedule exchange (depicted by dashed lines).

Initially, FlexiTP builds a data-gathering tree and assigns
the nodes’ schedules. Nodes then maintain their schedules
throughout their lifetime in the network. Thus, this initial
network setup is a one-off phase. During the initial network
setup, FlexiTP uses CSMA /CA for packet transmission, and
so, the nodes’ receivers are always on (that is, in listening
mode) and also uses a token-passing scheme. Nodes
execute specific procedures only if they hold a token,
hence avoiding collisions. After the initial network setup
finishes, nodes perform regular data-gathering tasks using
their TDMA schedules. They also can modify their
schedules when the network topology changes. FlexiTP
uses a forwarding-to-parent routing scheme [19] over a
data-gathering tree. Nodes route packets to their parents
until they lose connection with the parents.

Fig. 2 shows a node’s schedule structure. The schedule
only represents a list of slots when a node should be active,
and so, the slots are not contiguous in time (discrete). In
FlexiTP, slot number 1 is dedicated to the Fault-Tolerant
Listening Slot (FTS) that is simply a short CSMA period

854

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

? A collection of nodes

Data gathering tree construction l

ﬁ\letwork connectivity optimizatioﬂ

Parent selection

[Neighborhood data collection]

Initial network setup
(CSMA/CA)

>

Time slot assignment
[Data gathering slot assignment]\ Neighbor
™ schedule
Rl exchange
[Multi-function slot assignment]"
[Global-highest slot assignment] /
Until @ ™
node dies
Fault tolerant listening period]".‘ Fault tolerant
3| schedule
- - wat exchange Data gathering cycle
[Data gathering period] (CSMA/CA & TDMA)
Multi-function period:
local time synchronization and local repair
~

Fig. 1. FlexiTP phases.

where all nodes in the network are in listening mode. This
feature allows nodes to adjust themselves according to their
local neighborhood state. Nodes switch to the receive mode
for their scheduled Receive Slot List (RSL) and to transmit
mode for their scheduled Transmit Slot List (TSL); otherwise,
they switch to the sleep mode. A Multifunction Slot (MFS) is
used for local time synchronization and is utilized for local
repairs. The MFS in a node’s TSL means that the node
becomes the sender of a synchronization packet in that slot,
whereas the receivers of the packet record the MFS in their
RSL. The Conflict Slot List (CSL) records slots that are used
by a node’s first-level and second-level neighbors, which
will be described later in Section 3.2. Nodes also maintain
the Global Highest Slot (GHS) field, which contains the
network’s highest slot. Thus, nodes know the start and the
end of a data-gathering cycle.

3.2 Terminology

This section describes terminologies used throughout the
paper (illustrated in Fig. 3). A first-level neighbor of a sensor
node is any node (not necessarily along the tree) within its
communication range. Furthermore, any node that is within
the communication range of the node’s first-level neigh-
bor(s) is referred to as a second-level neighbor. For example,
B’s first-level (direct) neighbors are A and D. Accordingly,
B’s second-level neighbors are BS, C, and E. Parent refers to
an immediate node that forwards a source node’s packet
and that is closer to the base station (in terms of hop count)

FTS RSL TSL GHS

CSL

EEEC~| DREEC-] DNEEE B

Fig. 2. A node’s transmission schedule structure. The slots are not
contiguous in time.

1

compared to the node. For example, A is the parent of B, and
50, B is the child of A. Ancestor refers to a router that is more
than one hop away from a source node to which the source
node’s packet is forwarded to and which is closer to the base
station (in terms of hop count). For example, BS is the
ancestor of B and D, that is, B and D are descendants of BS.

3.3 Data-Gathering Tree Construction

The FlexiTP data-gathering tree construction is responsible
for establishing connectivity among nodes, and so, a tree
path for routing data from a source node to the base
station is created. After a data-gathering tree is constructed,
the local topology is known to nodes in the network in that
each node knows its parent, children, descendants, and
first-level neighbors. A data-gathering tree is constructed in
three phases: parent selection, network connectivity opti-
mization, and neighborhood data collection. The nodes use
CSMA/CA during these phases.

3.3.1 Parent Selection

The base station generates a connectivity token and initiates
the data-gathering tree construction using a simple flooding

Base station [BS]

E[3]

B [5]
[...]: Node ID

Fig. 3. A tree built for gathering data in the network of five nodes.

LEE ET AL.: FLEXITP: A FLEXIBLE-SCHEDULE-BASED TDMA PROTOCOL FOR FAULT-TOLERANT AND ENERGY-EFFICIENT WIRELESS...

scheme. The connectivity token is distributed using a
top-down subtree-by-subtree approach. A subtree consists
of a parent and its children. The rule is that the connectivity
token is passed from a node to the child with the smallest
node ID in the current subtree. When a node obtains the
connectivity token, it broadcasts a tree construction signal
to find its prospective children. Nodes that are able to
receive the signal become the children of the broadcaster
node. FlexiTP allows the human manager to have control
over the breadth of a data-gathering tree by specifying the
maximum number of children a node can have. This phase
ends when the token comes back to the base station finally,
that is, after all the children of the base station and their
descendants have selected their parents.

3.3.2 Network Connectivity Optimization

In the network connectivity optimization phase, a node that
is unable to get a tree construction signal after a certain
period of time (user parameter) will send a distress signal to
find a parent. Recall that nodes use CSMA/CA during this
phase, and so, a node backs off for a random period of time
if it overhears another distress signal; if not, it broadcasts a
distress signal. Neighboring nodes that receive this distress
signal send a reply and confirm their availability to accept
the distressed node as their child. The distressed node then
selects the neighbor node with the lowest hop count to the
base station to become its parent.

3.3.3 Neighborhood Data Collection

This phase collects information about a node’s direct (first-
level) neighbors. During the parent selection and network
connectivity optimization phases, a node may send signal-
ing packets and receive multiple replies from other nodes
within its communication range. The node then records
these nodes as its direct neighbors in its neighborhood table.
This neighborhood data is then propagated to the base
station, and hence, the base station can build a network
connectivity map.

3.4 Time Slot Assignment

FlexiTP uses a depth-first-search schedule to reduce
buffering. This scheduling scheme allows data sent by a
source node to be forwarded by routers to the base station
in an interleaving manner. This scheme enhances reliability
by preventing the loss of packets due to buffer overflow.
After a data-gathering tree is constructed, the local topology
is known to nodes in the network such that each node
knows its parent and children (if any). The base station then
generates a time slot assignment token and initiates the time
slot assignment phase. The token passing is done using the
depth-first-search technique. The token is passed to the
child that has the lowest node ID.

The FlexiTP time slot assignment function consists of
four main phases: data-gathering slot assignment, MFS
assignment, neighbor schedule exchange, and GHS assign-
ment. In the data-gathering slot assignment, each node in the
network builds its data-gathering schedule by selecting a
slot to transmit its own data and then routers on the path to
the base station assign receive and forward slots for that
node’s data. Once a node claims a slot, it executes the
neighbor schedule exchange to propagate the claimed slot to its

855

first-level and second-level neighbors. After all nodes in the
network build their data-gathering schedules, they execute
the MFS assignment. Finally, the base station informs the
network’s highest slot to all nodes in the network through
the GHS assignment.

In FlexiTP, the slot selection always starts from slot
number 2 because slot number 1 is dedicated to FTIS. A
node can claim a slot if the slot is not listed in its RSL,
TSL, and CSL. Therefore, in selecting a slot, there is no
need to know the true value of GHS. This slot selection
scheme allows a slot to be reused by many nodes as long
as the nodes’ transmissions are not within interference
range of each other, and hence, the spatial slot reuse can
be maximized.

3.4.1 Data-Gathering Slot Assignment

When a node obtains the token, it allocates a transmit slot to
send its own data by choosing the lowest slot number that is
not listed in its RSL, TSL, and CSL fields. The node (current
requestor) then informs the claimed slot to its parent (one of
its first-level neighbors) by unicasting a forward_slot_request,
as well as piggybacking an inform_slot_request. In this way,
slots to forward the node’s data to the base station are
allocated. Furthermore, the inform_slot_request on the
broadcast packet triggers the neighbor schedule exchange
phase that will be described in Section 3.4.3. The
forward_slot_request contains the claimed slot information:
the slot number, the receiver’s ID (parent ID), and the
neighbor level counter. The requestor’s first-level neighbors
that receive the forward_slot_request checks the intended
receiver of that packet. If a neighbor node is the intended
receiver of the packet, it knows that it is the parent of the
current requestor and so lists the received slot number in its
RSL; else, it will execute the neighbor schedule exchange.
The parent then assigns the corresponding transmit slot,
that is, a slot to forward the requestor’s data. The
corresponding transmit slot must be bigger than the
received slot number and is not listed in the parent’s RSL,
TSL, and CSL. Afterward, the parent executes the neighbor
schedule exchange and sends the forward_slot_request to the
requestor’s ancestor (that is, routers). The data-gathering
slot assignment as explained before is repeated until the
base station receives the forward_slot_request. The data-
gathering slot assignment ends when the token is returned
to the base station.

3.4.2 Multifunction and Global Highest Slot Assignment

FlexiTP adopts a top-down MFS structure in which the base
station initiates the MFS in a data-gathering cycle. In a
multifunction period, each parent node in the network
synchronizes its children. FlexiTP performs the MFS
assignment right after the data-gathering slot assignment
ends. Initially, the base station generates an MFS assign-
ment token. The base station becomes the current parent to
claim the MFS. It claims an MFS that is bigger than any slots
in its RSL and TSL because the MFS is claimed after all
nodes build their data-gathering schedule; furthermore, the
MFS must not be listed in its CSL. The base station adds the
claimed MFS in its TSL and then informs the MFS to all of
its children by multicasting an inform_slot_request packet
consisting of the slot number, the receivers’ node ID

856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

VOL. 19, NO. 6, JUNE 2008
Node Lookup Table
RSL

TSL CSL

A

[2][«]s](e][] ¢]

BBE

Base station [BS]) FT3 .
- Bs | 1 |
A
Al ca °
c
- D 4] o [1]
e
[...]: Node ID I:I

Fig. 4. FlexiTP nodes’ schedule (lookup table).

(children node IDs), and the neighbor level counter. The
children then assign the MFS as the reserved receive slot in
their RSL. The neighbor schedule exchange is then also
performed. Afterward, the base station performs the depth-
first-search token passing. When a node in the network
receives the token but has no child, the node skips
claiming the MFS and continues passing the token accord-
ingly. When the token is returned to the base station, the
MES assignment ends. After the data-gathering slot and
MES assignment phases, the base station knows the highest
slot claimed by any node in the network. The base station
then again initiates depth-first-search token-passing
mechanism to inform the GHS to all nodes in the network.

3.4.3 Neighbor Schedule Exchange

The neighbor schedule exchange phase is performed
through CSMA/CA communication in which a node
broadcasts its claimed slot to its direct neighbors (first-level
neighbors), and then, each of these direct neighbors
propagate the slot information again to their direct
neighbors (second-level neighbors). In this way, a slot
claimed by a node is informed to all neighbors within twice
the node’s communication range. Since FlexiTP prevents
nodes that are potentially within the interference range of
each other to claim the same slot, collision-free traffic can be
guaranteed.

If during the data-gathering slot assignment or the
MFS assignment phase a node receives the inform_slot_request
in a packet, it means that the neighbor schedule exchange
phase needs to be executed. The neighbor slot exchange is
controlled by the neighbor level counter information in the
packet, which indicates the status of aneighbor, whetheritisa
first-level neighbor (the neighbor level counter is equal to
one) or a second-level neighbor (the neighbor level counter is
equal to two). If a node receives a packet with a level counter
less than or equal to two, it will include the slot in its CSL.
Furthermore, if the current level counter is less than two, the
node increments the level counter value and broadcasts the
packet to its direct neighbors; if not, it stops the neighbor
schedule exchange.

[=][]
[¢]

[&]e]
[¢] [¢]

]

=
=)

Data Gathering Slot

E(e] ElEIE:]
EIEIEIE]E e o
IEIEE]

[CEEEEE]
IEIEE]E s [

I:‘ Multi Function Slot

3.4.4 Example

We now illustrate the time slot assignment algorithms
described previously by using the data-gathering tree
shown in Fig. 4. The base station generates a token and
initiates the time slot assignment function. The token
passing is done using the depth-first-search technique.
The token is passed to the child that has the lowest node ID.
Thus, the base station will pass the token to node A first,
and A becomes the token holder. At this stage, no node has
claimed slot number 2, so A claims slot number 2 and
records this slot in its TSL. Node A then propagates the slot
information to its parent (BS) and its first- and second-level
neighbors. Node A’s first-level neighbors are nodes BS, B,
and E. Since BS is the intended receiver of A’s transmis-
sion, BS lists the slot in its RSL, whereas B and FE list the
slot in their CSL. Again, BS, B, and E broadcast the slot
information to their direct neighbors, and hence, C' and D
also list slot number 2 in their CSL. Afterward, A passes the
token to its child, node B.

When node B becomes the token holder, it claims the
lowest available slot that is not listed in its RSL, TSL, and
CSL, which is slot number 3. Again, B propagates this slot
information to its parent and neighbors. Node B’s parent,
A, then selects the next available slot to forward B’s data to
the base station, which is slot number 4. Node A then also
propagates the claimed forward slot to its parent and
neighbors. This token-passing mechanism is replicated
until all nodes in the network receive the token. Note that
node E can reuse slot number 6 because this slot does not
appear in E’s CSL. Thus, in slot number 6, both nodes D
and E send their packets to their parents, whereas C' and
BS expect to receive a packet from their respective children
in that slot. When the token is returned to the base station
permanently, the data-gathering slot assignment phase
finishes. Afterward, the base station initiates the MFS
assignment by generating a token and claiming MFS
number 8. The base station propagates this slot to its
children and its first- and second-level neighbors. The base
station adds the MFS number 8 in its TSL, whereas its
children (nodes C and E) add the MFS in their RSL, and its
neighbors (nodes B and D) add the MFS in their CSL. The
rest of this phase is performed similarly to the depth-first-
search token passing used in the data-gathering slot
assignment. Since the base station knows the network

LEE ET AL.: FLEXITP: A FLEXIBLE-SCHEDULE-BASED TDMA PROTOCOL FOR FAULT-TOLERANT AND ENERGY-EFFICIENT WIRELESS... 857

topology and the nodes” schedules, it then uses the token-
passing mechanism again to inform nodes about the GHS
in the network and the start of the data-gathering cycle.
After FlexiTP’s initial network setup finishes, nodes per-
form regular data-gathering tasks using their TDMA
schedules.

3.5 Time Synchronization Scheme

Time synchronization is critical in TDMA-based MAC
protocols because nodes that are involved in a scheduled
communication must wake up at the same time to exchange
information. In FlexiTP, a hierarchical structure is con-
structed in the data-gathering tree construction phase. Each
node in the tree knows its parent and its children. FlexiTP
performs time synchronization locally, with each parent
synchronizing its children. This multihop parent-children
broadcast synchronization approach is similar to root-
neighbors synchronization approach in FTSP [32].

In the MFS of a node, the node broadcasts its clock and
the current GHS number known to that node to the
children. The purposes of propagating the GHS are to
allow nodes in the network to keep the period of data-
gathering cycle up to date and to allow nodes to perform a
local repair, which will be described in Section 3.6. The
FlexiTP time synchronization scheme is desirable because
children only need to have the same clocks as their parent
to ensure that a parent is in the receive mode when a child
sends data to it and vice versa. This local synchronization
scheme is simple but effective because clock drift is
minimized by synchronizing nodes during each data-
gathering cycle. Furthermore, it incurs low overheads since
the synchronization message is piggybacked to the MFS
packet. In addition, FlexiTP adjusts its slot length to include
radio-switching times, which are the times required for a
sensor node radio to transit from the sleep state to idle and
from the idle state to sleep. Thus, when the sender wants to
transmit, it is guaranteed that the intended receiver(s) is
awake and listening. In the worst case, a node falls out of
synchronization before its MFS cycle. The node then tries to
resynchronize itself to the network by listening to its
neighborhood activities. If the node overhears any of its
neighbor’s data transmission, it retrieves the current slot
number of the transmission and uses the slot number to
adjust its virtual clock. It then uses this virtual clock as the
reference for reading its lookup table (that is, schedule).

3.6 Fault Tolerance

Wireless sensor networks are prone to network dynamics
such as dropped packets, nodes dying, being disconnected,
powering on or off, and new nodes joining the network, and
so, the networks need to be able to self-configure without
knowing anything of the network topology in advance [33],
[34], [35], [36], [37]. In FlexiTP, nodes listen to environment
activities during the FTIS to allow these nodes to self-
configure in the event of failures without prior knowledge
of the network topology. If there is a node that sends a
distress signal during FTS, nodes in the network that
receive this signal will reply to it and perform a local self-
repair. In the event that a new node is added to the network
or when an existing node in the network wants to find a
new parent, FlexiTP allows nodes in the network to adopt
these faulty nodes as their children, assign schedules for

these faulty nodes, and rebuild their own schedules.
FlexiTP utilizes the existing TDMA schedule to perform a
local repair, and so, a collision-free and cost-free schedule
rebuilding and schedule exchange is guaranteed, which will
be described later.

3.6.1 Packet Loss

FlexiTP handles packet loss during the initial network
setup, as well as data gathering. In the initial network setup,
FlexiTP utilizes an RTS/CTS/ACK scheme of IEEE 802.11
to handle packet loss during the depth-first-search token
passing. For example, when a parent does not receive a
token ACK from its child (receiver), the parent keeps
retransmitting the token until it receives an ACK, for a
specified period of time (user parameter). If after the time
expires, the parent still receives no ACK, it proceeds with
passing the token to the next child. On the other hand, if a
child does not receive a token ACK from its parent (the
parent probably dies) after a period of time, it will find a
new parent. Since in the initial network setup phase, nodes
work in CSMA/CA and they are all in listening mode, the
child can broadcast a distress signal for finding a new
parent. The child’s neighbors that receive the signal send a
reply. The child then selects the best parent based on the
lowest hop count to the base station. The selected parent
then updates its list of children and propagates this
topology change to the base station, and so, the token-
passing flow in the network reflects the current network
connectivity.

In real-world implementations, collision-free traffic
cannot be guaranteed. There would be environmental
factors such as obstacles and humidity that could affect a
transmission. Moreover, field trials of a sensor network for
environmental monitoring of soil moisture in [8] showed
that nodes may lose connectivity for extended periods. In
FlexiTP, during data-gathering cycles, nodes detect packet
loss based on their RSL, that is, their scheduled receive
slots. For example, when a node does not receive a packet
when it expects data from its child, it will request a data
retransmission from that child during the MFS. The child
appends the requested data onto the data packet that will
be sent in the immediate data-gathering slot in the next
data-gathering cycle. Furthermore, if a node receives the
data retransmission request repeatedly, it decides to find a
new parent in the FTS (see Section 3.6.3 for details) because
the current link connectivity is too noisy.

3.6.2 New Nodes

In FTS, a new node sends a distress signal. Nodes that are
within the communication range of the new node become
neighbors and prospective parents of the new node. The
new node then selects one of them as its parent, based on
the lowest hop count to the base station. The selected parent
allocates two slots to the new node: one data-gathering slot
(that is, the parent’'s GHS incremented by one) and one
MFS (the parent’s MFES). If the parent does not have an MFS
because it did not have a child before, it will assign an MFS
to itself first, which is equal to the current GHS incremented
by two, before allocating its MFS to the new node.
Afterward, the new node’s routers build the new node’s
data-gathering schedule by utilizing existing data-gathering
slots and MFSs. The selected parent (let it be a requestor)

858 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

first proposes a forward slot (that is, forward slot request)
for the new node to its parent. The requestor piggybacks the
proposed slot on the data packet sent in the immediate
data-gathering slot. The requestor’s parent then checks the
proposed slot against its lookup table. If the proposed slot
exists in its lookup table, a next available slot will be chosen
to replace it. The approved slot will be listed in the
requestor parent’s RSL and also will be sent to the requestor
in MFS. The requestor then claims the approved slot and
lists the slot in its TSL. Afterward, the requestor’s parent
becomes the current requestor and proposes a forward slot
to its parent. This scheme is executed by traversing the path
to the base station. Note that every time a node claims a
new slot, it triggers the fault-tolerant schedule exchange
(executed within a data-gathering cycle), which is described
in Section 3.6.4.

3.6.3 Dead Nodes

The term “dead node” refers to one of the following
conditions: a node whose battery is weak or dead or a node
that is unreachable or unable to communicate due to
environmental factors such as fog and obstacles [38]. If a
node does not receive the expected data during all
scheduled receive slots of a child or descendant after
two data-gathering cycles, it assumes that the child or
descendant is dead. It then removes the child or descendant
from its children list or descendant list, respectively. The
node then performs a slot garbage collection in which all
receive slots, transmit slots, and MFSs that are associated
with that child or descendant are deleted from its lookup
table, and so, these slots are not wasted on idle listening.
For example, when node D in Fig. 3 fails to send data to
its parent, node B, B does not forward D’s data to BS. If
BS and B do not receive D’s data after two data-gathering
cycles, they can assume that D is dead.

A node becomes an orphan if it does not receive a
synchronization message in its MFS from its parent after
two data-gathering cycles. The orphan node then
broadcasts a distress signal in the FTS to find a new parent.
The orphan node first tries to find prospective parents that
are neither its children nor descendants. The orphan node
then selects a prospective parent that has the lowest hop
count to the base station as its new parent. If other nodes in
the data-gathering tree are outside of the orphan’s com-
munication range, a child or descendant of the orphan is
then eligible to be a new parent if the child or descendant
can reach a node that has a path to the base station. The
data-gathering schedule assignment for the orphan node is
the same as the new node’s assignment, except that there
may be many proposed slots as the orphan node may have
children and descendants. The orphan node needs to
propose its data-gathering slots (including the forward
slots for its children and descendants) in its TSL to the new
parent. This method allows the orphan node to transfer its
TSL to the new parent while maintaining its RSL (that is,
children and descendants of the orphan node do not need
to rebuild their schedules).

3.6.4 Fault-Tolerant Schedule Exchange

The purpose of the fault-tolerant schedule exchange is to
inform a node’s claimed slot to other nodes that are
potentially within the interference range of the node. The

fault-tolerant schedule exchange phase uses the FTS
schedule and the existing TDMA schedule: data-gathering
slots and MFSs. Every time a node claims one or more
transmit slots, the fault-tolerant neighbor schedule ex-
change phase is triggered. The list of claimed slots is called
inform_slots, and the slot information (slot IDs and the
neighbor level counter) is piggybacked on the node’s data
packet sent in the immediate data-gathering slot and MFS.
A receiver of the packet retrieves the neighbor level counter.
If the neighbor level counter is less than or equal to three,
the receiver lists slots in its CSL, increments the neighbor
level counter, and piggybacks the updated inform_slots on
the data packet sent in the immediate data-gathering slot
and MFS; else, the receiver drops the inform_slots. In FTS,
the node also broadcasts its claimed slots to its first-level
and second-level neighbors. This scheme ensures that first-
level, second-level, and some third-level neighbors of a
node are informed of a new claimed transmit slot.

4 PERFORMANCE EVALUATION

We implemented FlexiTP in the network simulator (ns-2)
[39], and the code is downloadable at [40]. Our simulation
results are based on the mean value of 20 different network
topologies involving up to 400 nodes located randomly in a
network area of 300 x 300 m. The location of the base
station was fixed at the top-center of the network map. Our
simulation parameters were based on Mica2 Mote hardware
[14], [41], [42], [43], [44]. Table 1 presents our simulation
parameters. We set the length of the FlexiTP data-gathering
slot and MFS to be 26 ms: 23.3 ms for a packet transfer [43],
2.45 ms [14] for a node radio to transit from the sleep state
to idle, and 0.25 ms [14] for a node radio to transit from the
idle state to sleep. Although the switching energy cost is
non-negligible [44], using the FlexiTP TDMA approach is
still better than not putting nodes into the sleep state if they
are inactive. For example, suppose a node is inactive for
three slots. By putting the node into the sleep state during
these three slots, the amount of energy spent is (Tjran_on *
Rran,on) + (Ttran,off *]Dtran,off) + (3 * T;lot *]Dsleep) = 0.08 mJ.
This value is much smaller than keeping the node idle,
which consumes (3 * Ty * Pqee) = 2.34 mJ.

4.1 Energy Efficiency

4.1.1 Initial Network Setup

The initial network setup cost is the energy cost for
constructing a data-gathering tree, collecting neighborhood
information, and building nodes” schedules. Recall that this
setup cost is a one-off cost as nodes maintain their schedules
throughout their lifetime in the network. Fig. 5 shows the
average node energy overhead in the initial network setup
and how much of it is spent on the time slot assignment
phase. The initial network setup cost per node is less than
0.6 percent of the node’s total initial energy of 54,000 J,
across various network scenarios. Thus, our simulations
based on Mica2 Mote show that FlexiTP is scalable for up to
400 nodes since it maintains a low initial network setup cost.
Fig. 6 shows the average time required for all nodes in a
network to perform the initial network setup and how long
of it nodes are in the time slot assignment phase. As the

LEE ET AL.: FLEXITP: A FLEXIBLE-SCHEDULE-BASED TDMA PROTOCOL FOR FAULT-TOLERANT AND ENERGY-EFFICIENT WIRELESS...

859

TABLE 1
FlexiTP Simulation Parameters in ns-2

Simulation parameters

Default value

Channel bandwidth 19.2 Kbps
Packet size

Transmission range 60 M
Transmit power 63 mW
Receive power 30 mW
Idle power 30 mW
Sleep power 0.003 mW
Transition power 30 mW
Transition time 2.45 ms
FlexiTP slot size 27 ms
FlexiTP FTS period 100 ms
Node initial energy 54,000 J

56 bytes (36 bytes for payload and 20 bytes for header)

network density increases, the initial network setup cost
increases. This is due to the increase in idle/transmit/
receive activities in configuring a network.

4.1.2 Data-Gathering Cycle

We measured node energy consumption per cycle by
calculating the rate of total energy consumed for listening,
switching, transmitting, receiving, and sleeping during a
data-gathering cycle, averaged over the entire network.
When the slot reuse feature of FlexiTP is switched on, the

350

—6— Initial network setup
—+&— Time slot assignment

Energy consumption per node(J)

200 300
Number of nodes

400

Fig. 5. Initial network setup cost per node versus network density.

12000

—6— Initial network setup
—+&— Time slot assignment

10000

8000

Time (seconds)
(2]
o
o
o

4000

2000

200 300
Number of nodes

400

Fig. 6. Initial network setup duration versus network density.

amount of energy spent on radio switching is reduced and
hence results in energy savings, as confirmed by our
simulation results in Fig. 7.

An important goal in developing algorithms for wireless
sensor networks is to minimize the energy consumption of
sensor nodes’ operations in order to increase the lifetime of
the network. In FlexiTP, nodes switch to the low-power
sleep mode if they are not scheduled to receive or transmit
data and therefore conserve energy and increase the node
lifetime. Fig. 8 shows the average network lifetime before
the first node in the network dies.

4.2 End-to-End Guarantees on Data Delivery

If the FlexiTP slot reuse scheme feature is switched on, all
nodes always claim the lowest available slot, and so, slot
reuse can be maximized. This method will also minimize
the number of slots required in a network. We measured the
percentage of slot reuse, that is, the rate of the total number
of slots that are used at least twice to the total number of
transmission slots in a network, averaged over the entire
network. Simulation results shows that FlexiTP provides a
slot reuse of at least 62 percent of the total transmission slots
used in the network across different network scenarios and
network densities.

0.18

—©— FlexiTP slot reuse off
L —<%— FlexiTP slot reuse on

Energy consumption per node (J)

300

200
Number of nodes

400

Fig. 7. Node energy consumption per data-gathering cycle versus
network density.

860 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

x10°
35

——©— FlexiTP slot reuse off
—<— FlexiTP slot reuse on

Network lifetime (cycles)

E1)00 260 360 400
Number of nodes
Fig. 8. Network lifetime in terms of data-gathering cycles versus network
density.

We first measured the packet latency metric, that is, the
time required for a packet to reach the base station since it
was sent by a source node. Fig. 9 shows the average latency
per packet in a data-gathering cycle. As expected, FlexiTP
with slot reuse results in shorter latency than FlexiTP
without the slot reuse scheme.

Sensor nodes have highly constrained computing power
and memory. Multihop routing requires routers to buffer
multiple packets prior to forwarding them to the next hop.
This method can result in a low throughput as the number
of packets dropped is high due to the nodes” memory buffer
overflow. FlexiTP addresses this issue so that nodes only
buffer one packet at a time to be sent to the next hop. This
ensures regular data delivery and hence provides predict-
able throughput. Fig. 10 shows FlexiTP throughput with
and without the slot reuse scheme. Theoretically, in multi-
hop wireless sensors, a node’s slot is safe to be reused by
other nodes that are two or more hops away [45], [46].
However, our simulation results show that this assumption
does not guarantee a collision-free slot reuse as the FlexiTP
with slot reuse scheme on produced a lower throughput
than that when the slot reuse scheme is off. We think that
this phenomenon is caused by interference and irregularity
in the radio channel.

4.3 Protocol Comparison

We compared the performance of FlexiTP with Z-MAC in
terms of energy efficiency (energy consumption per node,

—©— FlexiTP slot reuse off
gl —F=— FlexiTP slot reuse on

Packet delay per cycle (seconds)

o n n
100 200 300 400
Number of nodes

Fig. 9. Packet latency per gathering cycle versus network density.

100¢

90

80

701

60

50;/43’——9//f
I

40r

Throughput per cycle (%)

30r

201 —O— FlexiTP slot reuse off 7
—&— FlexiTP slot reuse on

100 260 300 400

Number of nodes
Fig. 10. Network throughput per data-gathering cycle versus network
density.

energy consumption per packet, and network lifetime) and
network performance (packet delay, throughput, fairness,
and network utilization). We followed the Z-MAC ns-2
installation manual detailed in [47] and configured Z-MAC
according to default settings shown in Table 1 in [28].
However, the simulation of Z-MAC for networks beyond
100 nodes did not work. Thus, we can only show the
comparison of FlexiTP versus Z-MAC for network topolo-
gies of 100 nodes.

We simulated a periodic data-gathering network for
300 seconds with interpacket arrival of 5 seconds. In all
simulations, each sensor node in the network, except the
base station, is a source node that always has data to send
every 5 seconds (that is, fixed data rate) for 300 seconds.
In this high-contention network case, FlexiTP outperforms
Z-MAC in terms of energy efficiency and network
performance, as confirmed by the simulation results shown
in Table 2.

The packet delay metric measures the time between a
packet generation and the packet reception at the base
station, within the 300-second simulation. The energy
consumption per node metric measures the total energy
consumed for listening, transmitting, receiving, switching
from sleep to idle mode, and vice versa, averaged over the
entire network. FlexiTP outperforms Z-MAC in the average
packet delay because each of a node’s routers has already
been preassigned a slot to relay the node’s data to the base
station, so that the time it takes for the data to reach from a
source node to the base station is reduced and predictable.
Furthermore, FlexiTP nodes send their data to their parent
at the start of their slot, whereas Z-MAC nodes need to
contend for the medium before sending their data. Z-
MAC’s small contention window in every slot results in a
large slot size that increases data delay and energy
consumption. In addition, Z-MAC nodes send ECN
messages when they experience high contention, and this
scheme increases the energy consumption per node for
propagating ECN messages to a two-hop neighborhood and
also extends the delay for moving toward TDMA operation,
on already heavy-loaded networks.

We also calculated the energy consumption per packet,
that is, the ratio of the total energy consumed by all nodes
in the network to the total number of packets received at
the sink, within the 300-second simulation. Table 2 shows
that FlexiTP outperforms Z-MAC in the average energy

LEE ET AL.: FLEXITP: A FLEXIBLE-SCHEDULE-BASED TDMA PROTOCOL FOR FAULT-TOLERANT AND ENERGY-EFFICIENT WIRELESS... 861
TABLE 2
FlexiTP versus Z-MAC
Metric FlexiTP FlexiTP Z-MAC
slot reuse off slot reuse on
Energy efficiency metrics
Average energy consumption per node (J) 0.06 0.11 9.45
Average energy consumption per packet (J) 0.0000496 0.0000861 0.0205010
Average network lifetime (days) 3410 1663 20
Network performance metrics
Average packet delay (seconds) 125.95 79.63 144.26
Average throughput (packets) 1109.85 1309.55 461.11
Average network utilization (%) 70% 82% 29%

consumption per packet, and this result is consistent with
that of the average energy consumption per node. FlexiTP
has a very low energy per packet because it guarantees the
reliable delivery of packets and eliminates overheads
(energy wastage) due to collisions, overhearing, idle
listening, and overemitting. On the other hand, Z-MAC
suffers contention-related collisions. Based on the average
energy consumption per node and node initial energy of
54,000 J, Table 2 shows that FlexiTP prolongs the network
lifetime by 83 times (with slot reuse) to 170 times (without
slot reuse) compared to Z-MAC.

Table 2 also shows the throughput using FlexiTP versus
that using Z-MAC, that is, the total number of packets
received at the base station from all nodes in the network
during the 300-second simulation. FlexiTP produces a
higher throughput than Z-MAC because every node in the
network is guaranteed a path to the base station. Since each
FlexiTP node gets an equally sized time slot and all nodes in
the network can access the channel, fairness is ensured. In
high-contention networks, the ECN scheme of Z-MAC can
promote fairness for nodes within one-hop neighborhood of
each other and can limit hidden terminals in a local
contention, however, at the cost of overloading the network
with the ECN packets. This approach results in an added
delay that leads to a decrease in throughput. Recall that
FlexiTP with the slot reuse scheme on results in collisions
that reduce the network throughput (as shown in Fig. 10).
However, when the slot reuse scheme is on, a network’s
data-gathering cycle is shorter than that of a network
without slot reuse. Table 2 shows that FlexiTP with the
slot reuse scheme on results in a higher throughput
than FlexiTP without slot reuse because it allows nodes to
send more packets over short data-gathering cycles in
300 seconds.

Finally, we measured and compared the effective
channel utilization of FlexiTP and Z-MAC. The channel
utilization metric is the percentage of the total packets
received at the base station (in bits) per time unit (in
seconds) per channel bandwidth (in bytes), which can be
formulated as follows (refer to Tables 1 and 2 for parameter
values):

Utilization_percentage =

(1)

total_packet jved X ket_size X 8
otail_pacret-recerve pacret_size % 100

stmulation_time x (channel_bandwidth + 8)

Table 2 shows that FlexiTP achieves a better bandwidth
utilization than Z-MAC under a large number of senders.
This is because FlexiTP allows senders to transmit their
packets without contending for the medium at all, whereas
Z-MAC requires senders to compete for their own slots and
their one-hop neighbors” slots.

Note that in [28], Rhee et al. show that Z-MAC can sustain
a good performance under high contention. Their simula-
tion results were based on low-density networks: a one-hop
benchmark sensor network of 21 nodes and a two-hop
benchmark sensor network of 18 nodes. In contrast, we
simulated high-density networks; hence, there are a higher
number of routers required for relaying a source node’s data
to the base station. This multihop benchmark intensely
increases contentions in local neighborhoods and in the
network overall. In high-density networks, Z-MAC’s per-
formance under high traffic loads degrades significantly.

4.4 Fault Tolerance

We tested FlexiTP’s robustness by focusing on the most
problematic scenarios such as adding or removing a
substantial number of nodes to or from the network. The
FTS is set to 500 ms. In the first simulation setup, we
switched off a substantial number of nodes from the
networks gradually over time, and so, there were an
increasing number of orphan nodes. We evaluated
FlexiTP’s local repair performance in terms of the network
reconnectivity ratio, energy expenditure, and local repair
latency.

The reestablishment of network connectivity after node
failures is depicted in Fig. 11. We found that the network
connectivity reestablishment after FlexiTP local repair
improves as the network density increases. Furthermore,
the network gets partitioned as the number of node failures
increases. The network connectivity represents the total
number of nodes that are actually connected to the tree over
the total number of nodes that are expected to be connected
to the tree after a number of nodes in the network are
switched off. This simulation results confirm that FlexiTP is
adaptive to node failures as the remaining nodes still
formed a connected network.

The energy expenditure for rebuilding the nodes’
schedules is free since FlexiTP allows the nodes’ routers
to allocate slots to the nodes utilizing existing data-
gathering and multifunction packets. We measured the
average node energy expenditure to reestablish a network
connectivity by computing the following energy costs: the

862

—e— 100 nodes
—<— 200 nodes
| —8— 300 nodes

—%— 400 nodes

Network reconnectivy latency (FTS cycles)

10 20 30 40 50
Number of orphan nodes

Fig. 11. Network connectivity reestablishment after a certain number of

node failures.

cost for an orphan node to send a distress signal to find a
parent, the cost for prospective parents to send a reply to
the orphan node, the cost for the orphan node to select a
parent by sending a confirmation signal, and the cost for the
selected parent to send a schedule to the orphan node.
Fig. 12 shows that the average energy expenditure of a node
involved in the local repair is less than 1.2], that is, only
around 0.000022 percent of the node’s initial energy, across
all scenarios. Fig. 13 shows the local repair latency in terms
of the total number of FTS cycles required for orphan nodes
to get a new parent and rebuild their schedules, that is, in
the range of 6 to 13 cycles. The local repair latency can be
improved by increasing the FTS period. The human
manager can customize this feature according to the
application’s dynamics and needs.

In the second simulation setup, we added a number of
new nodes to the networks gradually over time and
evaluated how fast FlexiTP can incorporate the new nodes
to the existing networks. Fig. 14 shows that as the number
of new nodes introduced to the network increases, the
average number of FIS cycles required for these nodes to
select a parent increases. Based on the simulation results, it
is apparent that FlexiTP is robust to node additions.
However, FlexiTP’s local repair performance starts to
deteriorate when the number of nodes added is too large.
This is because new nodes have to wait for a few more
FTS cycles before they manage to select a parent. We also

—=©o— 100 nodes
1.2 —%— 200 nodes
—8— 300 nodes
1.1} —*— 400 nodes

o
©
T

o
3

2
o
T

Energy consumption per node (J)
o
@

o
5
T

10 20 30 40 50
Number of orphan nodes

Fig. 12. Node energy expenditure for reestablishing a network
connectivity after a certain number of node failures.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

—o— 100 nodes
—<— 200 nodes
[—&— 300 nodes

—%#*— 400 nodes

Network reconnectivy latency (FTS cycles)

10 20 30 40 50
Number of orphan nodes

Fig. 13. Local repair latency in terms of the number of FTS cycles after a

certain number of node failures.

observed that the increase in the network density increases
the latency of new nodes in selecting a parent. This is as
expected because in high network densities, the networks
are dense, and so, there are more nodes in the network that
can reply to a new node’s distress signal, possibly causing
nodes to overhear each other’s transmission. When that
happens, other new nodes that lose in a contention wait for
the next FTS and hence increases the latency for selecting a
parent. The latency for selecting a parent can be improved
by increasing the FTS period, and so, nodes in a network
can take more new children during the FTS period in each
data-gathering cycle, that is, more new nodes can join the
network in each FTS.

5 CoNcLUSIONS AND FUTURE WORK

FlexiTP is a novel TDMA-based protocol for scheduling,
routing, and the application layer (time synchronization)
and provides end-to-end guarantees on data delivery such
as predictable throughput for gathered data, fair access to
the network for all sensor nodes, and robust self-healing
while also respecting the severe operating constraints of
wireless sensor networks. To the best of our knowledge,
FlexiTP is the first integrated protocol for sensor networks
that proposes a scheduling scheme that provides a balance
among end-to-end guarantees on data delivery, energy
efficiency, and memory efficiency.

22 T
—©— 100 nodes

20r —<%— 200 nodes
—=&— 300 nodes
—#— 400 nodes

Network reconnectivity latency (FTS cycles)

; /——e/
5 10 15 20 25
Number of new nodes

Fig. 14. Local repair latency in terms of the number of FTS cycles after a
certain number of new nodes join the network.

LEE ET AL.: FLEXITP: A FLEXIBLE-SCHEDULE-BASED TDMA PROTOCOL FOR FAULT-TOLERANT AND ENERGY-EFFICIENT WIRELESS... 863

FlexiTP offers a synchronized and flexible slot structure
in which nodes in the network simply build, modify, or
extend their schedules based on the local information
available to them (RSL, TSL, and CSL). FlexiTP utilizes
TDMA scheduling for efficient data gathering in wireless
sensor networks. Nodes are only active during their
scheduled slots; otherwise, they sleep. This fixed schedul-
ing approach offers a high energy saving by reducing idle
listening, avoiding collisions, and avoiding overhearing.
FlexiTP uses a forwarding-to-parent routing scheme where
nodes route packets to their parents until they lose
connection with the parents. This routing scheme is suitable
for periodic gathering sensor networks because nodes
remain static throughout their lifetime.

FlexiTP implements local synchronization to minimize
clock drifts among nodes: A parent synchronizes its
children during a designated MFS. As the network density
increases, the length of the data-gathering cycle increases.
One can increase the frequency of time resynchronization
within a data-gathering cycle by assigning additional MFSs
in order to provide a tighter time synchronization. In
FlexiTP, nodes can continue to function accurately in the
event of failure of individual nodes (for example, erro-
neous network link, dying node, and topology changes) by
performing a local repair in the FTS. The length of FTS can
be adjusted according to the application requirements. For
example, users can set a very short FIS (for example,
100 ms) for a sensor network application that is deployed
in a stable environment or an application that can tolerate a
slow network stabilization. Through comprehensive ana-
lysis and simulation results, we substantiate our argument
that FlexiTP is fault tolerant and energy efficient across
different network configurations. Our simulation results
confirm that in high contention networks, FlexiTP performs
better than Z-MAC in terms of energy savings and network
performance.

The distributed and flexible slot-structure algorithm of
FlexiTP enables nodes to modify their lookup tables during
network execution. Lee et al. [48] leverage this feature to
reconfigure nodes to report their data more rapidly or
slowly, depending on the significance and importance of
their data to the end user. In [48], FlexiTP is extended for
event-sensing applications. Lee et al. [48] describe how
FlexiTP is used as a baseline protocol for transferring time
slots from one part of the network to another part and
hence supporting nonuniform and reactive sensing in
different parts of a network. Currently, we are working
on using FlexiTP to support peer-to-peer communication in
wireless sensor networks, whereby a node can commu-
nicate with any nodes in the network without going
through the base station, that is, a node can become a sink
for other nodes” data.

ACKNOWLEDGMENTS

The authors would like to thank the three anonymous
reviewers for their valuable comments on the draft of this
paper. They also would like to thank Ajit Chakrapani
Warrier, who is one of Z-MAC primary developers, for his
advice on the ns-2 implementation.

REFERENCES

[1] LF. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless Sensor Networks: A Survey,” Computer Networks,
vol. 38, no. 4, pp. 393-422, 2002.

[2] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin, “A Wireless Sensor Network for
Structural Monitoring,” Proc. Second ACM Int’l Conf. Embedded
Networked Sensor Systems (SenSys '04), Nov. 2004.

[3] J.Kim, K. Park, J. Shin, and D. Park, “Look-Ahead Scheduling for
Energy-Efficiency and Low-Latency in Wireless Sensor Net-
works,” Proc. Third ACM Int’l Workshop Performance Evaluation of
Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN '06),
Oct. 2006.

[4] F. Chen, F. Dressler, and A. Heindl, “End-to-End Performance
Characteristics in Energy-Aware Wireless Sensor Networks,” Proc.
Third ACM Int'l Workshop Performance Evaluation of Wireless Ad Hoc,
Sensor, and Ubiquitous Networks (PE-WASUN ’06), Oct. 2006.

[5] R.Iyer and L. Kleinrock, “QoS Control for Sensor Networks,” Proc.
IEEE Int’l Conf. Comm. (ICC '03), May 2003.

[6] D. Chen and P.K. Varshney, “QoS Support in Wireless Sensor
Networks: A Survey,” Proc. Int'l Conf. Wireless Networks
(ICWN ’04), June 2004.

[71 L.H.A. Correia, D.F. Macedo, A.L. dos Santos, and].M. Nogueira,
“Issues on QoS Schemes in Wireless Sensor Networks,” Technical
Report RT.DCC.004/2005, DCC/UFMG, Apr. 2005.

[8] R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, “A
Reactive Soil Moisture Sensor Network: Design and Field
Evaluation,” Int’l]. Distributed Sensor Networks, vol. 1, no. 2,
pp. 149-162, 2005.

[9] D. Culler, P. Dutta, C.T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre,
S. Shenker, 1. Stoica, G. Tolle, and]J. Zhao, “Towards a Sensor
Network Architecture: Lowering the Waistline,” Proc. 10th Work-
shop Hot Topics in Operating Systems (HotOS 05), June 2005.

[10] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media
Access for Wireless Sensor Networks,” Proc. Second ACM Int’l
Conf. Embedded Networked Sensor Systems (SenSys '04), Nov. 2004.

[11] M. Bhardwaj, T. Garnett, and A.P. Chandrakasan, “Upper Bounds
on the Lifetime of Sensor Networks,” Proc. IEEE Int’l Conf. Comm.
(ICC ’01), June 2001.

[12] G. Anastasi, M. Conti, M.D. Francesco, and A. Passarella, “An
Adaptive and Low-Latency Power Management Protocol for
Wireless Sensor Networks,” Proc. Fourth ACM Int’'l Workshop
Mobility Management and Wireless Access (MobiWac '06), Oct. 2006.

[13] W.L. Lee, A. Datta, and R. Cardell-Oliver, “FlexiMAC: A Flexible
TDMA-Based MAC Protocol for Fault-Tolerant and Energy-
Efficient Wireless Sensor Networks,” Proc. 14th IEEE Int’l Conf.
Networks (ICON ’06), Sept. 2006.

[14] M.J. Miller and N.H. Vaidya, “A MAC Protocol to Reduce Sensor
Network Energy Consumption Using a Wakeup Radio,” IEEE
Trans. Mobile Computing, vol. 4, no. 3, pp. 228-242, 2005.

[15] Y. Yuan, Z. Yang, Z. He, and]. He, “An Integrated Energy Aware
Wireless Transmission System for QoS Provisioning in Wireless
Sensor Network,” to be published in, Elsevier Computer Comm.,
May 2005.

[16] A. El-Hoiydi and].-D. Decotignie, “WiseMAC: An Ultra Low
Power MAC Protocol for Multi-Hop Wireless Sensor Networks,”
Proc. First Int’l Workshop Algorithmic Aspects of Wireless Sensor
Networks (ALGOSENSORS '04), July 2004.

[17] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient
MAC Protocol for Wireless Sensor Networks,” Proc. IEEE
INFOCOM ’02, June 2002.

[18] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient
MAC Protocol for Wireless Sensor Networks,” Proc. First
ACM Int’l Conf. Embedded Networked Sensor Systems (SenSys '03),
Mar. 2003.

[19] A. Boukerche, X. Cheng, and J. Linus, “A Performance Evaluation
of a Novel Energy-Aware Data-Centric Routing Algorithm in
Wireless Sensor Networks,” Wireless Networks, vol. 11, no. 5,
pp. 619-635, 2005.

[20] LFEW. van Hoesel and P.J.M. Havinga, “A Lightweight
Medium Access Protocol (LMAC) for Wireless Sensor Net-
works,” Proc. First Int’l Workshop Networked Sensing Systems
(INSS ’04), June 2004.

[21] S.S. Kulkarni and M.U. Arumugam, “TDMA Service for Sensor
Networks,” Proc. 24th Int’l Conf. Distributed Computing Systems
Workshops (ICDCSW '04), Mar. 2004.

864

(22]

[23]

[24]

(23]

[20]

[27]

(28]

(29]

(30]
(31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

(40]

(41]

[42]

(43]

(44]

[43]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

K. Arisha, M. Youssef, and M. Younis, “Energy-Aware TDMA-
Based MAC for Sensor Networks,” Proc. IEEE Workshop Integrated
Management of Power Aware Comm. Computing and Networking
(IMPACCT '02), May 2002.

G. Pei and C. Chien, “Low Power TDMA in Large Wireless
Sensor Networks,” Proc. IEEE Military Comm. Conf. (MILCOM '01),
Oct. 2001.

V. Rajendran, K. Obraczka, and J.J. Garcia-Luna-Aceves, “Energy-
Efficient Collision-Free Medium Access Control for Wireless
Sensor Networks,” Proc. First ACM Int’l Conf. Embedded Networked
Sensor Systems (SenSys '03), Mar. 2003.

V. Rajendran,].J. Garcia-Luna-Aceves, and K. Obraczka, “Energy-
Efficient, Application-Aware Medium Access for Sensor Net-
works,” Proc. Second IEEE Int’l Conf. Mobile Ad Hoc and Sensor
Systems (MASS '05), Nov. 2005.

S.C. Ergen and P. Varaiya, “PEDAMACS: Power Efficient and
Delay Aware Medium Access Protocol for Sensor Networks,”
IEEE Trans. Mobile Computing, vol. 5, no. 7, pp. 920-930, July 2006.
B. Hohlt, L. Doherty, and E. Brewer, “Flexible Power Scheduling
for Sensor Networks,” Proc. Third Int’l Symp. Information Processing
in Sensor Networks (IPSN '04), Apr. 2004.

I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: A Hybrid MAC
for Wireless Sensor Networks,” Proc. Third ACM Int'l Conf.
Embedded Networked Sensor Systems (SenSys ‘05), Nov. 2005.

N. Ramanathan, M. Yarvis, J. Chhabra, N. Kushalnagar,
L. Krishnamurthy, and D. Estrin, “A Stream-Oriented
Power Management Protocol for Low Duty Cycle Sensor
Network Applications,” Proc. Second IEEE Workshop Em-
bedded Networked Sensors (EmNetS ’05), May 2005.

M.L. Sichitiu, “Cross-Layer Scheduling for Power Efficiency in
Wireless Sensor Networks,” Proc. IEEE INFOCOM ’04, Mar. 2004.
K. Langendoen and G. Halkes, “Energy-Efficient Medium Access
Control,” Embedded Systems Handbook. CRC Press, 2005.

M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “Robust Multi-Hop
Time Synchronization in Sensor Networks,” Proc. Int’l Conf.
Wireless Networks (ICWN ’04), June 2004.

A. Gonzalez, I. Marshall, L. Sacks, I. Henning, and T. Khan, “A
Self-Synchronised Scheme for Automated Communication in
Wireless Sensor Networks,” Proc. IEEE Int’l Conf. Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP '04),
Dec. 2004.

G. Gupta and M. Younis, “Fault-Tolerant Clustering of Wireless
Sensor Networks,” Proc. IEEE Wireless Comm. and Networking Conf.
(WCNC '03), Mar. 2003.

F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentell,
“Fault Tolerance Techniques for Wireless Ad Hoc Sensor Net-
works,” Proc. First IEEE Int’l Conf. Sensors, June 2002.

A. Boukerche, RW.N. Pazzi, and R.B. Araujo, “Fault-Tolerant
Wireless Sensor Network Routing Protocols for the Supervision of
Context-Aware Physical Environments,” J. Parallel Distributed
Computing, vol. 66, no. 4, pp. 586-599, 2006.

F. Araujo and L. Rodrigues, On the Monitoring Period for Fault-
tolerant Sensor Networks, http://www.di.fc.ul.pt/~ler/reports/
ladc05.pdf, 2007.

A. Boukerche, I. Chatzigiannakis, and S. Nikoletseas, “Power-
Efficient Data Propagation Protocols for Wireless Sensor Net-
works,” SCS |. Simulation: Trans. Soc. for Modeling and Simulation
Int’l, 2005.

The Network Simulator—ns-2,
2007.

W.L. Lee, FlexiTP Implementation in ns-2, http://www.csse.uwa.
edu.au/~winnie/programs/flexitp, 2007.

I. Raicu, L. Schwiebert, S. Fowler, and S.K.S. Gupta, “Local Load
Balancing for Globally Efficient Routing in Wireless Sensor
Networks,” Int’l |. Distributed Sensor Network, 2005.

MICA2 Mote Datasheet, http://www.xbow.com/Products/
Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf, 2007.

G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori,
“Performance Measurements of Motes Sensor Networks,” Proc.
Seventh ACM Int’l Symp. Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM '04), Oct. 2004.

G. Xing, C. Lu, Y. Zhang, Q. Huang, and R. Pless, “Minimum
Power Configuration in Wireless Sensor Networks,” Proc. ACM
MobiHoc '05, May 2005.

I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed
Randomized TDMA Scheduling for Wireless Ad-Hoc Networks,”
Proc. ACM MobiHoc '06, May 2006.

http://www isi.edu/nsnam/ns,

[40]

(47]

(48]

B. Deb, S. Bhatnagar, and B. Nath, “A Topology Discovery
Algorithm for Sensor Networks with Applications to Network
Management,” Technical Report DCS-TR-441, Rutgers Univ.,
May 2001.

L. Rhee, Z-MAC: Hybrid MAC for Wireless Sensor Networks, http://
www.csc.nesu.edu/faculty /rhee/export/zmac/software/zmac/
zmac.htm, 2007.

W.L. Lee, A. Datta, and R. Cardell-Oliver, “A Novel Systematic
Resource Transfer Method for Wireless Sensor Networks,” Proc.
IEEE Global Telecomm. Conf. (GLOBECOM ’06), Nov. 2006.

Winnie Louis Lee received BCM degree
(with honors) in mathematics and computer
science and the PhD degree in computer
science from the school of computer science
and software engineering, from the University
of Western Australia, Perth, Australia, in 2003
and 2008, respectively. Her research interests
are in wireless sensor networks, MAC and
cross-layer protocols, peer-to-peer networking
in wireless sensor networks, and sensor
strategies.

Amitava Datta received the MTech and PhD
degrees in computer science from the Indian
Institute of Technology, Madras, in 1988 and
1992, respectively. He did his postdoctoral
research at the Max Planck Institute for Com-
puter Science, the University of Freiburg, and
the University of Hagen, all in Germany. He
joined the University of New England, Australia,
in 1995 and, subsequently, the School of
Computer Science and Software Engineering,

Umversﬂy of Western Australia, Perth, Australia, in 1998, where he is
currently an associate professor. He was a visiting professor in the
Computer Science Institute, University of Freiburg, in 2001, 2003, and
2005. His research interests are in parallel processing, optical
computing, computer graphics, information visualization, bioinformatics,
and mobile and wireless computing. He has served as a program
committee member for several international conferences in these areas,
including the International Parallel and Distributed Processing Sympo-
sium in 2001, 2005, and 2008. He is on the editorial board of the Journal
of Universal Computer Science published by Springer and the Journal of
Pervasive Computing and Communications published by Troubador. He
is a member of the IEEE, the IEEE Computer Society, the IEEE
Communications Society, the ACM, and the Mathematical Association
of America.

Rachel Cardell-Oliver received the MSc degree
in distributed systems software from the Uni-
versity of Western Australia and the PhD degree
in protocol verification from the Computer
Laboratory, University of Cambridge. She is an
associate professor in the School of Computer
Science and Software Engineering, University of
Western Australia, Perth, Australia. Her re-
search interests include building wireless sensor
networks for environmental monitoring, pro-

grammmg languages and requirements logic for sensor networks,
formal methods for distributed systems, and test generation from formal
specifications.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

