
(g)awk 1

Lecture 13

Michael J Wise

L12 awk 1 - 2

Awk
• Computer program names, particularly in the Unix

world, are often puns or acronyms; Awk is both.

BBC
https://www.bbc
.com/news/scien
ce-environment-
50563953

Great Auk
hunted to
extinction C19

Awk is the initials of the 3 people who created hit: Aho, Weinberger
and Kernighan. Early Awk books had pictures of an Auk

https://www.bbc.com/news/science-environment-50563953

L12 awk 1 - 3

Diversity of Awks

• Multiple different implementations of AWK
– AWK – original version from Bell Labs (1977)
– Gawk – GNU AWK (1988).
– Nawk – New AWK (1993)

• Calling awk can end up invoking any of these, or the
even newer Mawk (found in Ubuntu).
– System dependent

• We will be using Gawk in this unit as it’s the most
widely used.

L12 awk 1 - 4

Awk

• Somewhat like Sed, Awk can be viewed as set of
pattern-action rules which are applied to lines from
an input file

• Like Sed, Awk rules can be specified on the
command-line or (generally) via a file of rules – awk
script.

• Awk syntax based on C (Kernighan was involved in
creating an early standard K&R C)

• The basic information unit for Sed is the input line;
for Awk it is the fields within the input line

L12 awk 1 - 5

Rules and Fields

• A rule is one or more Awk statements enclosed in
parentheses { }. The rule can be preceded by a pattern

• A rule without a pattern is applied to all input lines
• awk regards input lines as a sequence of fields

separated by a field separator character.
– By default this is <tab> or <blank>.

• $0 refers to the entire line.
• $1 refers to the first field, $2 to the second, etc.
gawk ’{print $0}’ test_file

– prints the contents of test_file on stdout
– Note the use single-quotes to protect the gawk

statement from the Shell.

L12 awk 1 - 6

Gawk commands

• Gawk has relatively few command-line options:
• -F <Char> – set Char to be the field separator
• -f <file> - take the rules from the file

• -v <variable>=<value> create a variable and give
it a value at the command line. The variable (with
that value) will be available to the Awk script

L12 awk 1 - 7

Example

gawk –F # ’{print $2 "#" $1}’ test_file

• sets # as the field-separator, and for each input line
prints the second field, followed by #, followed by the
first field.

Test_file

Mozart#WA#8640352
Orff#C#8777251
Brahms#J#7531430
Vaughan-Williams#R#8707067
Saint Saens#C#6940827

Stdout

WA#Mozart
C#Orff
J#Brahms
R#Vaughan-Williams
C#Saint Saens

L12 awk 1 - 8

Awk variables

• Awk variables appear as required (like Python)
• An Awk variable’s type depends on usage. String is

default, with initial value ””, but will be
interpreted as 0 if appropriate (unlike Python)

• The format for an assignment to a variable is:
<variable> = <expression>
• To use a variable in an expression, just use the name

(no $ required!), e.g.
x = 42 # The type of x is now integer

L12 awk 1 - 9

Built-in Awk variables

• Like Shell, Awk has a number of built-in variables
that can be very handy. Here are some
ARGC Command-line argument count
ARGV Array of command-line arguments
FILENAME Name of input file (there may be several)
FNR Index of line in current file
FS Input field separator (default blank, tab)
NF Number of fields in the current line
NR Index of current line (from start of first file)
OFS Output field separator (default blank)

L12 awk 1 - 10

Mathematical expressions
• Mathematical expressions can include:

– +, -, *, /, % (modulus, remainder), ˆ (exponentiation).
– ++<variable> (pre-increment)
– <variable>++ (post-increment).

• With pre-increment, the variable is incremented and
the value returned is the new value;

• With post-increment, the value returned is the old
value. The variable is then incremented.

• For example:
% echo 4 | awk ’{a = $1; print ++a " " a++ " "a}’

5 5 6
• Some maths functions

L12 awk 1 - 11

Assignment
• Like C, assignment = returns a value, so
a = b = c = 42 understood as a = (b = (c = 42))
• Compound Assignment: The arithmetic operators can be

combined with =, i.e. +=, -=, *=, /=, %= and ˆ=.
• In general:

<variable> <operator>= <expression>
is a shorthand for:
<variable> = <variable> <operator> <expression>

• For example:
gawk ’{x = $1; x += 42; print “With meaning of life
= ” x}’

• Note single quotes, and ; statement separator

L12 awk 1 - 12

Print

• Printing values can be done in two ways; The
simplest is to use print (as in the examples above)

• The format for print is:
print [<expression list>] [> <expression>]
print [<expression list>] [| <expression>]
• If no expressions are provided $0 is printed
• The optional > <expression> allows you specify an

output file into which the output will be redirected.
• <expression> must evaluate to a string.

L12 awk 1 - 13

Print
• For example, the shell-script copy_file:
#!/usr/bin/env bash
gawk "{print \$0 > \"$2\"}" $1

Example of it being used:
% ./copy_file Alice_in_Wonderland.txt fred
-rw-r--r-- 1 stud stud 160785 Mar 1 07:43 fred
-rwxr-xr-x 1 stud stud 52 Mar 1 07:40 copy_file
-rw-r--r-- 1 stud stud 160785 Jan 18 06:25
Alice_in_Wonderland.txt

• After the variable substitutions are done, what is
the Gawk command that gets executed?

$1 $2

L12 awk 1 - 14

Print

• >> can be used in place of >
• Alternatively, Awk allows the output to be
redirected into a UNIX command via a pipe internal to

the awk-script. The command is a string.
• For example, the small student database:
Mozart#WA#8640352#99
Orff#C#8777251#80
Brahms#J#7531430#90
Vaughan-Williams#R#8707067#85
Saint Saens#C#6940827#85

L12 awk 1 - 15

Print

• This script calls Awk to print all the students by
decreasing mark.

#!/usr/bin/env bash
gawk -F"#" \

’{print $2 "#" $1 "#" $4 | "sort -t# -k 3nr"}’
marks\

| sed -e ’s/#/ /’ -e ’s/#/: /’

• Note the use of single quotes
• The call to sort could also be done from the shell, rather

than from within Awk

L12 awk 1 - 16

In computing, as in life, punctuation matters

Pinterest pin.it/eSRXJTU

L12 awk 1 - 17

Two special rules

• By default (i.e. unless you have a prior condition),
each set of actions within their respective { } apply
to all input lines. Then depends on condition.

• Two special Rules:
– BEGIN { <actions> } is executed before the first

line is read
– END { <actions> } is executed after the last input

line has been read

L12 awk 1 - 18

Demo

• Create an awk script, simple_avcol.awk, to
computer the mean and standard deviation of a file
of numbers (one per line).

• Recall that:

𝑥̅ =
∑!
" 𝑖
𝑛

S =
1
𝑛
)
!

"

𝑖# − 𝑥̅#

Sum of squares, right?

Compute sum_x and sum_x_sqr as you go

L12 awk 1 - 19

Printf

• printf allows the user to specify the format in which
output will appear.

• Calls to printf look like:
printf(<format string> [, <expression list>])

• printf sends characters of the format string verbatim
to stdout, except for format conversions.

• Format conversions are place-holders in the string.
• For example:
awk ’{print ++i ": " $0}’ test_file

• can be rewritten as:
awk ’{printf("%d:%s\n", ++i , $0)}’ test_file

L12 awk 1 - 20

Format Conversions

• The schema for format conversions (somewhat
simplified) is:

%[<output width> [.<precision>]]<format letter>
• For example, %d %5s %0.2f
• The <format letter> of a format conversion indicates

how the corresponding value will be printed.
• Values corresponding to format conversions are

obtained by evaluating elements of the <expression
list>.

• There should be as many items in the list as there
are format conversions.

L12 awk 1 - 21

Formats

Format
Letter Description

c Single Character
s String (default: length of string)
d Integer (default: length of integer)
e Scientific notation (default 6 decimal places)
f Floating point (default 6 decimal places)

g Either e or f whichever is shorter with trailing 0
removed

% The % itself

L12 awk 1 - 22

Notes

• If a \n is required, it must be explicitly added; \t is
the <TAB> character.

• The most common formats, %s and %d do not usually
require the output width to be specified.

• Floating point reals and scientific notation reals
usually require the field width to be specified, e.g.

printf("Min: %d, Max: %df\n",min, max)
printf("Mean: %0.3f", sum/n)
printf("\tN: %d\n",n)

• How many lines were printed?

