
git

Lecture 12

Daniel Smith

L99 git - 2

Mistakes, Time Travel and final_2.docx

L99 git - 3

Time Travel

• git is a free and open source distributed version
control system

• “Version control” means keeping track of files
at specific points in time

• Git tracks your files using
snapshots called commits

• A directory containing files
and directories tracked by
git is called a repository

L99 git - 4

git Commands Starter Pack
• git init

Create a new git repository in the current directory.
This creates a .git directory containing all the
information about the repo.
• git status

Show status of the current repo. Files shown by status
can be in one of three states:
staged (will be included in the next commit)
unstaged (will not be included in the next commit)
untracked (not tracked by git)

Note: most git commands only work inside a repo.

L99 git - 5

git Commands Starter Pack
• git add <files>
Add each of the listed files to the set of files staged for
inclusion in the next commit.
• git commit

Commit all staged files and open an editor to record a
commit message. Options:
-m <message> Provide a message on the command
line instead of opening an editor.
-a Automatically stage all modified and deleted files
before committing. Does not stage untracked files.
Convenient, but use with care.

L99 git - 6

When to Commit
• When you have made a noteworthy change
• When your code compiles for the first time
• Right before you make a big change that could break

lots of things
• When you fix a bug
• When you add a new feature

L99 git - 7

Commit Messages
• 50 char summary header, blank line, then body

paragraph(s) to explain the commit
• Commit message body should give context (why and

how) to the commit. The actual changes (what) are
already recorded by git in the diff.

• Use imperative mood (“do this”) to describe what the
commit does. Don’t use past tense (“I did this”)

• See https://cbea.ms/git-commit/ for more on writing
excellent commit messages

https://cbea.ms/git-commit/

L99 git - 8

Bad Commit Example

Add three lines to main.c

Code wasn’t working so fix it. Now the thing should
print for q1.

L99 git - 9

Bad Commit Example

WIP

L99 git - 10

Good Commit Example
Fix timeout bug in file parser

Add check to detect empty lines when parsing file and
move loop counter increment outside of if conditions.

Empty lines did not match any of the parser checks
and so were not recorded. Add if statement to record
empty lines and add them to database.

The loop counter only incremented within if
statements, risking infinite loop when conditions were
true. Move increment outside if statements to correct
this.

L99 git - 11

git log and git lola
• git log shows you the timeline of git commits
• HEAD is where you are on the timeline.

L99 git - 12

git log and git lola
• The git log isn’t very concise or pretty, so I like to

use git lola:

L99 git - 13

git log and git lola
Copy the following into ~/.gitconfig for your full color
git lola action:

[alias]

lol = log --graph --decorate --pretty=oneline --abbrev-commit

lola = log --graph --decorate --pretty=oneline --abbrev-commit --all
[color]

branch = auto

diff = auto

interactive = auto

status = auto

Source: http://blog.kfish.org/2010/04/git-lola.html

http://blog.kfish.org/2010/04/git-lola.html

L99 git - 14

git GUIs
• You can also use a GUI (graphical user interface) to

view the git log. Most of these are pretty and have
buttons for common git commands.

• git-gui and gitk are built-in GUI tools that come
with git

• There are many third-party options as well, such as
github desktop

• Graphical git interfaces will not be covered in this
course

L99 git - 15

git Commands Continued
• git diff

Show changes (differences) between two data sources.
By default, diff compares between all uncommitted
changes and HEAD. Options:
--cached Ignore unstaged files (only compare staged
files against HEAD)
• git diff <commit>
Compare against a specific commit, not HEAD
• git diff <commit> <commit>
Compare between two specific commits
• git diff <file>
Limit comparison to a particular file or directory

L99 git - 16

git diff examples
• git diff --cached

Compare all staged files with HEAD
• git diff 4c8ae99

Compare current working tree* (including all
uncommitted work) with commit 4c8ae99
• git diff 4c8ae99 36d0608

Compare commit 4c8ae99 with commit 36d0608
• git diff 4c8ae99 36d0608 foo/README.txt

Compare changes to foo/README.txt between
commits 4c8ae99 and 36d0608

*Working tree = repo directory and all subdirectories

L99 git - 17

git Commands Continued
• git checkout <commit>
Travel to a commit or branch. This command moves
HEAD and updates all files in the working tree to match
the new location. Options:
<commit> The commit or branch to travel to. Defaults
to HEAD.
<file> If specified, do not travel (no change to HEAD).
Instead, overwrite the specified file or directory with
its contents at the specified commit. Great for
restoring an old version of a file if you broke it!

L99 git - 18

Time isn’t a straight line
• git branch

List branches in the repo.
• git branch <name>
Create a new branch at HEAD with the specified name.
Options:
-m Rename the current branch to the specified name.
-d Delete branch with the specified name. Branch
must be fully merged
• git checkout –b <name>
Create and check out a new branch. Equivalent of:
git branch <name>
git checkout <name>

L99 git - 19

Reconnecting the timeline
• git merge <branch>
Merge the changes made in branch back into the
current branch.

Merge is smart, but if both branches have different
changes to the same line, there will be conflicts. You
must resolve these before continuing the merge. You
can see which files have conflicts using git status.

L99 git - 20

Resolving conflicts
Below is a simple example of a conflict in crawl.txt:

STAR WARS
<<<<<<< HEAD
It is a planet of civil war.
=======
It is a period of PARTIES and maybe war.
>>>>>>> complex-feature
Rebel spaceships, striking
from a hidden base, have won

To resolve a conflict, first edit the conflicted file(s) and
make any desired changes. Delete all the lines added
by git.

L99 git - 21

Resolving conflicts
Below is our edited version of the file:

STAR WARS
It is a period of civil war.
Rebel spaceships, striking
from a hidden base, have won

When you are done editing all conflicted files, stage
the changed files and continue the merge:

git add crawl.txt
git merge --continue

If desired, you can abort your merge instead:
git merge --abort

L99 git - 22

.gitignore
• It is often useful to store files in a git repo but not

track them with git. Build files, temporary files and
some config files are common examples.

• Create a file called .gitignore in repo root
• Each line is a search pattern for something to be

ignored
• / is the directory separator
• Patterns containing / in the middle are relative to

.gitignore. Otherwise the pattern is applied at every
level of the repo.

• * matches anything except /
• ? Matches any single character except /
• # denotes a comment
• Don’t forget to add .gitignore itself to git

L99 git - 23

.gitignore example

vim temporary files
these patterns apply everywhere
*.swp
*~
.netrwhist

build directory and its content
pattern applies to anything called build
build

a particular file
this pattern only applies to this file
foo/bar/my_config.txt

L99 git - 24

github
• Git is a distributed version control system, so the

same repo can exist on multiple computers and be
synchronized between them

• There will often be one remote repo which multiple
computers may sync with

• Github is a public repository hosting service
• Github keeps a remote copy of your repo in the

cloud

L99 git - 25

git remote commands
• git clone <repo>
Download a copy of the specified repo
• git pull

Fetch commits from the remote and merge them into
the current branch
• git push

Push local commits on the current branch to the
remote.

L99 git - 26

Workflow examples
• Single user:

1. Pull from remote
2. Change file(s)
3. Commit
4. Push to remote

• Multi user:
1. Pull from remote
2. Create new feature branch
3. Change files
4. Commit
5. Check out and pull main branch
6. Merge feature branch onto main branch
7. Push to remote

L99 git - 27

Useful links

• Further reading:
– https://rogerdudler.github.io/git-guide/
– https://github.com/danrs/git-practice
– https://git-scm.com/book/en/v2/Getting-

Started-About-Version-Control
– https://docs.github.com/en/get-started/getting-

started-with-git
– https://git-scm.com/docs/
– https://www.atlassian.com/git/tutorials/
– https://cbea.ms/git-commit/

https://rogerdudler.github.io/git-guide/
https://github.com/danrs/git-practice
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://docs.github.com/en/get-started/getting-started-with-git
https://git-scm.com/docs/
https://www.atlassian.com/git/tutorials/
https://cbea.ms/git-commit/

L99 git - 28

Demo

• Create a repo and commit some files
• View the log
• Restore an old version of a file
• Pull and push with github
• Advanced: merging! (if time permits)

