
Sed

Lecture 11

Michael J Wise

L11 sed - 2

Sed – Stream Editor

• sed and awk are, in my view, the two most powerful
general purpose Open Source shell scripting tools

• cat, tr, wc, ls, cut, etc are special purpose.
Options used to specialise performance, but
essentially do just one thing

• sed and awk go beyond options; each has its own
little language
– See the article from Jon Bentley’s Programming

Pearls column in CACM on Little Languages

L11 sed - 3

sed
• sed performs editing functions "on the fly".
• sed is intended to work as part of a Unix pipeline,

i.e. a filter, reading lines one-by-one from a file (or
stdin), performing edit functions on the lines and
then sending the lines to stdout

sed <options> <file> ...
• -e <sed operation>

– Apply this one operation to the file(s)
• -f <file of sed operations>

– A file of sed operations, executed top-down on each
line

• -n

– Transformed output not sent to stdout (need p)

L11 sed - 4

Inline sed

• Simple actions can be specified in-line using one or
more -e options.

sed -e ’s/[()]/ & /g’ -e ’s/ */ /g’ infile

• Note: Edit functions are performed sequentially, so
an action performed by an earlier function may
affect subsequent edit operations.

• For example, this command first looks for
occurrences of either (or) and places a space
around each found.

• The g at the end of the edit operation specifies that
this is to be done for every occurrence of (or),
rather than just the first (which is the default
action).

L11 sed - 5

Inline sed

• The second edit operation then replaces every
sequence of one or more blanks with a single blank
(and again, this is done for every occurrence).
– Keep in mind that otherwise, a space before a

bracket ends up being two spaces, then bracket

L11 sed - 6

Sed script

• Specifying sed commands using multiple -e operations
can become (very) tedious.

• Alternative: place the commands in a file (or sed
script) which is named via the -f <file> option.

• In a sed script sed operations are listed one per line
• sed script comments begin with a # in the first column

(and go to <CR>).
• The format for commands is:
[<address> [, <address>]] <function> [<arguments>]

L11 sed - 7

Addresses

• If no addresses are supplied, the function is applied
to all input lines

• If one address is supplied, the function is applied
just to that line: <address> <operation>, e.g. 42p

• If two addresses are supplied, the function is applied
to all lines in the range:

• <address>,<address> <operation>, e.g. 50,200p
• A ! before the function selects lines OTHER THAN

those specified by the addresses

L11 sed - 8

Addresses

• An address can be:
– Line number
– . (the current line)
– $ (the last input line)
– 0 (before the first line, only some commands!)
– A context address specified by a regular expression

enclosed between / /
– Simple arithmetic on an address,

L11 sed - 9

Stream editor

L11 sed - 10

Expo-sed: Some commands

s/<regular expression>/<text>/[g]
• Probably the most common operation − search for a

string that matches <regular expression> and
replace it with <text>.

• If the operation is followed by g, the replacement is
done globally, i.e. everywhere in the string.

s/ˆ[a-z][a-z]*/{&}/

• Take lines beginning with strings of lower-case
alphabetics and place parentheses around the
strings.
– & is whatever was matched by the regular

expression, i.e. works like \1 following \(\)

L11 sed - 11

Expo-sed: Some commands

d Delete the lines indicated by the addresses.
1,5d
/ˆD[TR]/d

• Note that, after a line has been deleted there is no
point applying the remainder of the script to the
current line (!!), so a new line is obtained and the
script started from the top.

p This option prints out the addressed lines. It is only
found together with the -n command-line option.
l This option is similar to p, except that non-
printable characters are displayed and long lines are
folded

L11 sed - 12

Sed tips

• Here, in no particular order, are some tips for
getting sed scripts to work.

• Work incrementally
– Build your scripts up slowly, line by line, testing

each bit as it is added against known examples.
• In general, the best advice is 3 words,

test Test TEST
• Delete early

– If you can identify extraneous input that is not
required, delete it early (saves work downstream!)

L11 sed - 13

Sed tips

• sed is sequential
– Remember that the operation of one command may

change conditions for latter commands. Where you
are up to is the sum of the changes made to this
point (can be very complex; changes to changes to ...)

• complex operations can be broken down into a
sequence of simple ones.

• Don’t try to do everything in one script
– It is often easier to have a separation of concerns

and multiple scripts (connected with pipes), or
scripts piping to other utilities (e.g. cut, awk).

• Avoid long one-liners; can be very hard to
maintain/alter as needed

L11 sed - 14

Demo

• Data cleaning is the first in nearly all data-science
analyses. (Someone gave you perfect data? Really? 🤨)

• In the case of the Alice text, there are several instances
of words that were accidently joined during transcription,
e.g. “yardwhile”, “meanstomakeanythingprettier”

• Assume that any such infelicity is random so likely to
appear only once

• Notice that the count_occurences script does at least
part of what is needed so let’s munge that.

• Good idea to exclude common words (that just happen to
appear only once)
– /usr/share/dict/words

