
 1

Solutions to CITS2003/CITS4407 In Semester Test 2022

Q1. Given the file name pattern a?b[0-9]* which of the following file names
match that pattern (2 marks each):

abb3 Match Does Not Match
ab3 Match Does Not Match
abb3.txt Match Does Not Match
abc3 Match Does Not Match

Q2. I executed the command: file_count = $(ls $1| wc -l) but got back
the unexpected response: file_count: not found
Write the fixed command (2 marks)

Ans: file_count=$(ls $1| wc -l) # no spaces around =

Q3. At the top of a Bash script, you will typically find:

#!/usr/bin/env bash
You might alternatively see
#!/bin/bash

Whichever of these you choose, why is that command placed there? (2 marks)

Ans: It allows the shell to interpret the script as being a
Bash script (versus Python, Shell, etc)

Q4. This question has several parts, but together they are the text of a Bash
script, which is called extract_lines. As input extract_lines is given two
integers, L1 and L2 (representing line numbers) and the name of a text file. It
then reports on standard output the lines from L1 to L2, inclusive, e.g.
extract_lines 100 200 Alice_in_Wonderland.txt.

The extract_lines script begins with:
#!/usr/bin/env bash

You then need to start with some anti-bugging tests.

Q4.1. Write a shell command which tests whether the command entered by the
user has 3 arguments (3 marks)

Ans:
if [[$# -ne 3]]
then
 echo "Usage: $0 <bottom line number> <top line number>
<textfile>" > /dev/stderr
 exit 1
fi

 2

Any message will do, so long as there is one.

Q4.2. Write a Shell command which tests whether the third argument is an
ordinary file with length greater than zero. (3 marks)

Ans:
if [[! -s $3]]
then
 echo "The file $3 does not exist or has zero lenth"
/dev/stderr
 exit 1
fi

Q4.3. Describe one further antibugging test that should be done. (2 marks)

Ans: you could test whether second integer is greater than or
equal to the first integer

Q4.4. Now that processing the call to extract_lines has survived the anti-
bugging, write the shell commands which implement reporting the range of
lines. There are lots of ways of doing this; one way is to loop over the lines of the
file using a for loop that looks like:

IFS=” # Set the end of word marker to get whole text lines
”
for line in $(< file)
do

done

What are the missing Shell commands? (Hint: you will likely need a line counter)
(10 marks)

Ans:
counter=0
for i in $(< $3)
do
 counter=$((counter + 1))
 if [[$counter -ge $1]]
 then
 echo $counter $i
 if [[$counter -eq $2]]
 then
 exit 0
 fi
 fi
done

 3

Q4.5. Another way of doing the Q4.4 computation (after antibugging) can make
use of built-in Unix programs plus, perhaps, one or two other shell commands,
but not Shell loops. What is the code for that that? (6 marks)

Ans:
diff=$(($2 - $1 + 1))
head -n $2 $3 | tail -n $diff

Q5. I want to create the shell script nth, which given an integer N and a file of
numbers, returns the Nth largest number, so nth 1 F should return the largest
value in F, nth 2 F the second largest value, etc. Don’t worry if there are more
than one equally large values, just return one of them. If you wish you can refer
to the extract_lines program that you defined in Q4. (4 marks)

Ans:
sort -k 1nr $2 > _x
extract_lines $1 $1 _x

