
CITS4401 Software Requirements and Design
Semester 1, 2020

Workshop week 7 – Introduction to design

.

Exercises:

1. When you write a program, are you doing “design”? Why or why not? If not, then
what makes software design different from coding?

Probably not.

If we regard design as consisting of a set of models which record enough information on
our choices of subsystem decomposition, data management, and so on, for the system to
be implemented according to the requirements – then when we write code, we are not
doing design.

Our decisions and models might be expressed through the code – but in most programming
languages, they are expressed only implicitly. (And fairly haphazardly.)

Software design normally consists of models or representations of a system, rather than
code itself.

2. If a software design is not a program, then what is it?

See the previous question for one answer – we could consider design to be set of models,
representing choices made, sufficient that the system can then be implemented from the
models.

3. How do we assess the quality of a software design?

1



Many ways of assessing design quality have been suggested - did yours differ from the
following?

McGlaughlin ([McG91], cited in Pressman) suggests that:

• The design should implement all explicit requirements contained in the require-
ments model, and it must accommodate all the implicit requirements desired by
stakeholders.

• The design should be a readable, understandable guide for those who generate code
and for those who test and subsequently support the software.

• The design should provide a complete picture of the software, addressing the data,
functional, and behavioral domains from an implementation perspective.

Brügge and Dutoit ([Bru04], in section 7.4.7) suggest it should be:

• correct: all elements of the design should be able to be traced to some requirement
• complete: all requirements must be addressed in the design
• consistent: there are no cases where aspects of design conflict, or where design goals

violate nonfunctional requirements
• realistic: it should be possible to be implemented
• readable: developers should be able to understand the design.

The lecture slides state a design should:

• be simple
• be coherent (consistent, and providing a unified picture of the system)
• adequately meet requirements
• be adaptable

These sets of criteria aren’t identical, but capture elements of what we might consider “good
design” in different ways. For instance, a system that contains extraneous functionality
would not be as simple as possible, nor would it meet Bruegge and Dutoit’s criterion of
being correct (since there would be functionality not traceable to a requirement).

[McG91]: McLaughlin, Robert. “Some notes on software design: reply to a reaction.”
ACM SIGSOFT Software Engineering Notes 17.2 (1992): 70.

[Bru04]: Brügge, Bernd, and Allen H. Dutoit. Object Oriented Software Engineering
Using Uml, Patterns, and Java. Upper Saddle River, NJ: Pearson Education, 2004.

2


