
Week 1: Software Engineering

Reading: Pressman Chapters 1 (Software Engineering); Pressman Chapter
2 (Process Models)

1. Develop your own answers to Pressman’s five questions about software.
1) Why does it take so long to get software finished?
2) Why are software development costs high?
3) Why can’t we find all the errors before software is delivered?
4) Why do we spend so much time and e↵ort to maintain existing
software?
5) Why is it so di�cult to measure progress as software is developed
and maintained?

Solution: 1 because SW is complicated and the scope tends to
grow during development
2 because SW is written by people and it is very flexible
3 because SW is so complex
4 because SW is so complex, and because it is expensive it has to
last a long time
5 because SW is so flexible, every project is di↵erent; because SW
developer productivity varies dramatically

More suggestions from Pressman
It takes software so long to be finished, for the following reasons
a) Facilities are not available on line.
b) Development tools do not work as expected.
c) Customer insists on the new requirements, requiring redesign
and rework.
d) Product depends on the government regulations that change
unexpectedly.
e) Strict requirements for compatibility with existing system
require more testing, design, and implementation than expected.
f) Requirements to operate under multiple operating systems take
longer to satisfy than expected.
g) Software project risk management takes more time then ex-
pected.
h) Dependency on a technology that is still under development
lengthens the schedule.

2



Development costs are high:
a) Unacceptably low quality requires more testing, design and
implementation work to correct than expected.
b) Development of the wrong software functions requires redesign
and implementation.
c) Development of the wrong user interface results in redesign and
implementation.
d) Development of extra software functions that are not required
extends the schedule.

We can’t find errors before we give the software to our customer
for the following reasons:
a) Product depends on government regulation, which changes
unexpectedly.
b) Product depends on draft technical standards, which change
unexpectedly.
c) New development personnel sometimes are added late in the
project.
d) Conflicts within teams sometimes results in poor communication
and hence poor design
e) Sabotage by project management results in e�cient scheduling
and ine↵ective planning.
f) Sometimes the furnished components are poor quality result-
ing in extra testing, design and integration work and in extra
customer-relationship management.

We continue to have di�culty in measuring progress as software is
developed since:
a) Sometimes the purpose of the project is not clear.
b) There are a lot of business risks involved.
c) If the product built is not fitted well.
d) We need to review our work continuously.
e) A time check has to be maintained.
f) Project team has to be thorough and organized throughout the
process.

3



2. A common problem during communication occurs when you encounter
two stakeholders who have conflicting ideas about what the software
should be. That is, they have mutually conflicting requirements. De-
velop a process pattern that addresses this problem and suggest an
e↵ective approach to it.

Solution: A process pattern identifies the action is needed and
the work tasks to be performed. It can be specified formally (as
below) to document the actions so it can be reused and refined
in other projects. For conflicting requirements, first consider the
priority each stakeholder places on this requirements and others.
Look for a win-win compromise. May need a meeting to brainstorm
a compromise.

Pressman solution:
Pattern Name. Conflicting Stakeholder Requirements
Intent. This pattern describes an approach for resolving conflicts
between stakeholders during the communication framework activ-
ity.
Type. Stage pattern
Initial context. (1) Stakeholders have been identified; (2) Stake-
holders and software engineers have established a collaborative
communication; (3) overriding software problem to be solved by the
software teams has been established; (4) initial understanding of
project scope, basic business requirements and project constraints
has been developed.
Problem. Stakeholders request mutually conflicting features for
the software product under development.
Solution. All stakeholders asked to prioritize all known system
requirements, with resolution being to keep the stakeholder
requirements with highest priorities and/or the most votes.
Resulting Context. A prioritized list of requirements approved by
the stakeholders is established to guide the software team in the
creation of an initial product prototype.
Related Patterns. Collaborative-guideline definition, Scope-
isolation, Requirements gathering, Constraint Description,
Requirements unclear
Known Uses/Examples. Communication is mandatory throughout
the software project.

4



3. Cockburn argues “All organisations have a methodology - it is simply
how they do business.” and “Your methodology is everything you regu-
larly do to get your software out . . . the conventions your group agrees
to.”

Consider the 12 items in Cockburn’s Elements of a Methodology figure
(slide 8 lecture 1):

Process, Milestones, Values
Activities, Techniques, Tools
Teams, Roles, Skills
Quality, Products, Standards

Choose a software project that you have worked on, select a few of the
given methodology concepts and describe your methodology. Identify
any lessons learned from that project and how you might improve it
for future projects.

Solution: To discuss in groups. Discussion points included:

Team and skills: identified project leader and audited skills of each
of the members. One big team project broke into 2 subgroups and
had a project manager to coordinate their work.

Standards and products: often determined by the university project
eg sprints and deliverables for CITS3200 team project.

Milestones: One group noted late changes to requirements in a
team project as a problem. Need a way to manage unreasonable
expectations. Another problem is over-confidence expecting some
jobs can be completed in a short time when they cannot.

4. S and J Robertson propose the “brown cow” model as a way of cap-
turing multiple viewpoints, and capturing the “essence” of a problem.
Click on the links to read How Now Brown Cow (pdf) and/or watch
the (video).

Consider the problem of providing material for learners and teachers
in a university course Identify several di↵erent view points for this
problem (stakeholders) and describe each one briefly. In groups, each
student should role play one of these view points. Then, brainstorm
specific items for each of the quadrants: what now; how how; what fu-
ture and how future. For example, put in the how future quadrant, and

5



then work backwards to discover the what now or what future quadrant
requirements. For example, a how-future requirement could be “Access
to learning materials should be password protected for enrolled students
only”. Identify some “what” requirements for this problem. Concen-
trate on distinguishing between the what (essence) and how (solution),
and on recognising di↵erent viewpoints.

Solution: Discuss in class. Two important take aways from this
exercise: 1) separate the actual requirements from solution. and
not to jump to a solution before you have understood the problem.

2) to recognise that there are (many) di↵erent viewpoints

Example of what now: “VC wants to protect the Intellectual Prop-
erty of the University” Example of what future: “Students want to
browse units to select a course”

6


