
CITS4401 Software Requirements and Design
Week 11 – Design – review

Lecturer: Arran Stewart

1 / 23



Important concepts

Interfaces, preconditions, postconditions
Coupling, cohesion, partitions
Design patterns
Design documentation
Design activities

Making use of our requirements & analysis artifacts
Dealing with constraints

Event-driven systems
Architecture
Non-OO designs/agile methodologies

2 / 23



Interfaces

We said that interfaces are the boundaries where two things
meet.

We can have user interfaces; APIs (programming interfaces);
hardware interfaces

Coupling and interfaces
When we reduce coupling, we reduce the “surface area”
between two things

3 / 23



Multiple interfaces

Just as something can have more than one “surface” in different
directions (e.g. a cube has six faces, a dodecahedron 12), a
component or system can present different interfaces.

We might say it presents different interfaces to different “audiences”
(groups of external entities).

4 / 23



Multiple interfaces

An online service (like GitHub) can have multiple interfaces it
presents – e.g. a web interface, and a command-line interface
(accessed by using the git command).

5 / 23



Public and private interfaces

If a component is part of a package or subsystem – it might present
different interfaces, depending on whether it’s being accessed from
within the package, or from outside.

6 / 23



Public and private interfaces

We know this is true for objects – an object can have private
methods and instance variables, which can only be accessed by
other objects of that type – and public methods and instance
variables, which can be accessed by anyone.

7 / 23



Public and private interfaces

And it is true for collections of objects or classes (systems,
subsystems, and packages).

If we need to show this in UML, we can show public things with a
plus (“+”), and private things with a minus (“-”).

8 / 23



Public and private interfaces

Once we’ve made something public, we’ve made it available to users
(or programmers), and they’ll complain if we later remove or change
it.

Making things private prevents this – and by reducing “surface area”
exposed, we reduce coupling.

9 / 23



Coupling

Recall that (at a subsystem level):

High coupling means two subsytems depend on each other
closely

Changes to one subsystem will have high impact on the other
subsystem (change of model, massive recompilation, etc.)

Low or “loose” coupling means two subsystems depend on each
other less closely

A change in one subsystem does not affect any other subsystem

10 / 23



Design patterns

We saw a number of different design patterns – structural,
behavioural, creational.

The structural patterns, in particular, often tend to focus on ways of
reducing coupling.

There are disadvantages to reducing coupling:

Code produced may be less efficient – there are more “layers of
indirection” between objects
It may become more difficult to see what the flow of control is
(recall that this is so for event-driven systems, which are often
fairly loosely coupled)

You can’t just look at a class diagram and see “what interacts
with what”
that information may now not be apparent from a class view

11 / 23



Design documentation

We saw why design documentation is important:
someone will need to maintain your system!

And as changes need to be made, they will want to know why you
made particular design choices (and what the consequences might
be of altering them).

12 / 23



Design documentation

We discussed whether you need to document every single design
decision (no), and how you decide which ones to document and
which ones not.

13 / 23



Design activities

We looked at some of the activities involved in system design –
which use as “input” the artifacts of your requirements elicitation
and analysis activities:

Transform the analysis model by
defining the design goals of the project
decomposing the system into smaller subsystems
selection of off-the-shelf and legacy components
mapping subsystems to hardware
selection of persistent data management infrastructure
selection of access control policy
selection of global control flow mechanism
handling of boundary conditions

14 / 23



Design activities

For each of these activities, we saw which bits of your analysis
model you can use:
Making use of our analysis

Nonfunctional requirements →
Design Goals Definition

Functional model →
System decomposition (Selection of subsystems based on functional
requirements, cohesion, and coupling)

Object model →
Hardware/software mapping
Persistent data management

Dynamic model →
Concurrency
Global resource handling
Software control

Subsystem Decomposition
Boundary conditions

15 / 23



Design activities

For each of these activities, we saw ways you might do it . . .

Heuristics to Identify Subsystems
Consider the objects and classes in your requirements analysis
models.
Try grouping objects into subsystems by

assigning objects in one use case into the same subsystem
create a dedicated subsystem for objects used for moving data
among subsystems
minimizing the number of associations crossing subsystem
boundaries
ensure all objects in the same subsystem are functionally related

. . .

16 / 23



Design activities

Access control questions
Does the system need authentication?
If yes, what is the authentication scheme?

User name and password? Access control list
Tickets? Capability-based

What is the user interface for authentication?
Does the system need a network-wide name server?
How is a service known to the rest of the system?

At runtime? At compile time?
By communication port number?
By host name?

17 / 23



Design activities

Guidelines for choosing control flow
activities must occur in a fixed order with little time overlaps
between activities
→ choose procedural control
activities may occur in different orders, as determined by
external requests, but usually one activity at a time
→ choose event driven control (+ central controller)
activities are largely independent and can be time overlapped
→ choose threads

18 / 23



Design activities

. . . etc.

19 / 23



Event-driven systems

We looked at one very useful sort of system, event-driven systems

And we noted that this sort of system often decouples classes from
each other (Sensor and Display don’t directly use each other).

20 / 23



Architecture

We looked at different architectures – high-level ways of structuring
a system. e.g.

layered architecure
pipe-and-filter
blackboard / repository
client/server

We discussed when different architectures might be appropriate.

21 / 23



Alternative approaches to design

We looked at some alternative techniques for design. e.g.:

data-oriented design
use of formal methods

22 / 23



Agile methodologies

We discussed agile methodologies, which de-emphasize planned,
up-front design, in favour of incremental design.

23 / 23


