
CITS4401 Software Requirements and Design
Week 11 – Non-OO design

Lecturer: Arran Stewart

1 / 30



Some Other Design Methods

So far we have focused on object-oriented design
However object oriented design may NOT be suitable for all
types of systems
All design methods involve a hierarchy of decompositions which
partition the design into subsystems or components
This lecture outlines some non-object oriented methods for
doing this decomposition

2 / 30



Data-Oriented Design (DOD)

A school of thought: “identification of the inherent data
structure can be used to derive the structure of a program”
Logical Construction of Programs (LCP)

Developed by Warnier (’74)
Draw upon relationship between data structure and procedure
structure

3 / 30



Data-Oriented Design (DOD)

Data Oriented Design (DOD) may be successfully applied in
applications that have well-defined, hierarchical structure of
information
LCP is same as DOD
(See Pressman, 3rd Ed, pp. 429-432)

4 / 30



Data-Oriented Design (DOD)
As SW design methods have evolved, one school of thought holds
that “The identification of the inherent data structure can be used
to derive the structure of a program”.

Logical construction of programs (LCP) by Warnier is a text (avail
UWA Science Library 006.32 1974-34). The author proposed to
draw upon the underlying data structure and the relationship
between data structure and procedure structure to construct
programs. This is exactly the concept of DOD (Data-Oriented
Design). Data structure-oriented design transforms a representation
of data structure into a representation of software, e.g. recursive
binary tree data structure => tree parsing via recursion.

Data structure is considered to be the core element in program
construction. It is a core unit offered under Computer Science
program in universities throughout the world. Warnier also
suggested the use of flowchart, which has been widely used since.

(See Pressman, 3rd Ed, pp. 429-432)

5 / 30



Event-Oriented Design

Each subsystem consists of components that handle similar
type of events
Subsystems are event-handlers
Examples: editors; rule-based systems in AI; most real-time
systems are event driven
Disadvantage:

Subsystems don’t know if or when events will be handled

6 / 30



Data-oriented vs Event-oriented design

Data-oriented design

start with external data structures and continue by adding
more detailed data structures

Event-oriented design

what events are possible for this system?
what response is required for each event?
how does each event change the system state?

7 / 30



“Structured” design

Try to decompose each subsystem into modules
Two main strategies:

Object-oriented decomposition – subsystem decomposed into a
set of communicating objects
Function-oriented pipelining – subsystem decomposed into
functional modules

8 / 30



Structured design

modular / functional design

each subsystem captures one of the functions of the system

outside-in / top-down design

start with black boxes and their inputs and outputs
then divide each box into internal input-output boxes

9 / 30



Formal Methods and Refinement

A final (extreme) alternative to the design process is the use of
formal methods.
Software specifications are meticulously transformed into
mathematical statements.
Then a process of refinement is used to derive provably working
code from the mathematical specification.

10 / 30



Formal Methods cont.

Formal methods are used for safety critical applications.
Z (“Zed”) is a specification language that can map
specifications in first-order logic into executable pseudo-code.
The requirements stage of development is very expensive, but
the design, implementation and testing can be a lot cheaper
than other methodologies.

11 / 30



Agile Methods

In the 80s and early 90s, a wide spread view that the best way
to achieve better software was through careful project planning,
formalized quality assurance. . . - Suitable for large critical
projects shared by large teams (mostly located at different
locations) - For medium to small sized projects, the overhead is
too large

Agile methods rely on an iterative approach to software
specifications, development and delivery. They are designed for
business applications where the system requirements usually
change rapidly.

12 / 30



Principles of Agile Methods

All agile methods share the following set of principles:

Customer involvement

Customers should be closely involved throughout the
development process. Their role is provide and prioritize new
system requirements and evaluate the iterations of the system.

Incremental delivery

The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People, not process

The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive processes.

13 / 30



Principles of Agile Methods (cont.)

Embrace change

Expect the system requirements to change, so design the
system to accommodate these changes

Maintain simplicity

Focus on simplicity in both the software and the process.
Wherever possible, actively work to eliminate complexity from
the system.

14 / 30



Advantages of Agile Methods

Better customer satisfaction by the rapid and continuous
delivery of software.
People and interactions are emphasized rather than process and
tools. Customers, developers and testers constantly interact
with each other.
The close interaction between customer and software developer
allows continuous attention to technical excellence and good
design.
Software development is able to adapt to changing
circumstances. Even late changes in requirements are
welcomed.

15 / 30



Disadvantages of Agile Methods

In case of some software deliverables, especially the large ones,
it is difficult to assess the effort required at the beginning of
the software development life cycle.
There is lack of emphasis on necessary designing and
documentation.
The project can easily get taken off track if the customer
representative is not clear what final outcome that they want.

16 / 30



Best-known Agile Methods

Extreme Programming
Proposed by Beck (1999, 2000)
Commonly abbreviated as XP

Scrum
Proposed by Schwaber and Beedle (2001)

Crystal Clear
Proposed by Cockburn (2001)

Adaptive Software Development
Proposed by Highsmith (2000)

Feature Driven Development
Proposed by Palmer and Felsing (2002)

Test Driven Development (TDD)
Sometimes referred to as test-driven design

17 / 30



Extreme Programming (XP)

emphasizes on customer satisfaction
improves software project on 5 essential ways: communication,
simplicity, feedback, respect, and courage
advocates frequent “releases” in short development cycles
Other elements of XP include:

Pair programming
Extensive code review
Unit testing
Avoid programming of features until they are actually needed

18 / 30



Scrum

Scrum defines a flexible, holistic product development
It encourages team members to self-organize, to be
It adopts an empirical approach to requirements

There are 3 core roles in the Scrum framework:

Product owner (representing the stakeholders)
Project team
Scrum master (not a traditional team lead or project manager,
but acts as a buffer between the team and any distracting
influences)
Other elements in the framework: sprint (a basic unit of
development in Scrum), daily scrum, sprint review and sprint
retrospective

19 / 30



Scrum

A sprint (or iteration) is the basic unit of development in scrum.

Daily scrum: A daily scrum in the computing room. This centralized
location helps the team start on time. Each day during a sprint, the
team holds a daily scrum (or stand-up) with specific guidelines

At the end of a sprint, the team holds two events: the sprint review
and the sprint retrospective.

20 / 30



Scrum

At the sprint review, the team:

Reviews the work that was completed and the planned work
that was not completed
Presents the completed work to the stakeholders (a.k.a. the
demo)

At the sprint retrospective, the team: - Reflects on the past sprint -
Identifies and agrees on continuous process improvement actions

21 / 30



Crystal

The Crystal methodology focuses on people, interaction,
community, skills, talents, and communications. The software
process is consider important, but secondary.
Cockburn’s philosophy translate into a recognition that each
team has a different set of talents and skills and therefore each
team should use a process uniquely tailored to it.

22 / 30



Crystal Clear

is a member of the Crystal family of methodology
is considered an example of an agile
can be applied to small team (up to 8 developers) co-located
working on systems that are not life critical.
has the following properties:

Frequent delivery of usable code to client/users
Reflective improvement
Face-to-face close communication preferably by being co-located
Preferred for development of systems that are not life critical

23 / 30



Adaptive Software Development

Adaptive Software Development (ASD) is an advance form of
Rapid Application Development (RAD). It embodies the
principle that developers should continuously adapt the
software process to the work at hand.
ASD replaces the traditional waterfall cycle with a repeating
series of speculate, collaborate, and learn cycles.

24 / 30



Adaptive Software Development

Speculation – during speculation, the project is initiated and
adaptive cycle planning is conducted, the set of release cycles is
defined.
Collaboration – refers to the efforts for balancing the work
based on the predictive parts of the environment and the
uncertain surrounding mix of changes.
Learning – during the learning cycle, knowledge is gathered by
making small mistakes based on false assumptions and
correcting those mistakes. This leads to greater experience and
eventually mastery in the problem domain.

25 / 30



Feature Driven Development

FDD blends a number of industry-recognized best practices
together.
Its main purpose is to deliver tangible, working software
repeatedly in a timely manner.
FDD is a model-driven short-iteration process that consists of
five basic activities:

26 / 30



FDD

Develop overall model – high-level walkthrough of the scope of
the system; creation of detailed domain model.
Build feature list - The knowledge gathered during the initial
modelling above is used to identify a list of features (a feature
is a small client-valued function for the system).
Plan by the feature – produce the development plan from the
feature list; assign ownership of feature sets to programmers
Design by feature – produce a design package for each feature;
a chief programmer develops a selected set of features within 2
weeks.
Build by feature - After a unit test and a successful code
inspection, the completed feature is promoted to the main
build.

27 / 30



Test Driven Development

Test driven development is an Agile method

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

TDD maps the requirements directly into testing code. The
source code is then written specifically to pass these tests (and
only to pass these tests)

This process is repeated incrementally until the product passes
all the tests, and thus meets the requirements.

Also referred to as “Test Driven Design”

28 / 30



Test Driven Development

“TDD completely turns traditional development around. When you
first go to implement a new feature, the first question that you ask
is whether the existing design is the best design possible that enables
you to implement that functionality. If so, you proceed via a Test
First Development (TFD) approach. If not, you refactor it locally to
change the portion of the design affected by the new feature,
enabling you to add that feature as easily as possible.” Scott Ambler

29 / 30



page24

References

Sommerville, Software Engineering, 7th ed., Addison-Wesley
2004

Section 17.1 “Agile Methods”
Section 17.2 “Extreme Programming”

Pressman, 3rd Ed,
pp. 429-432

30 / 30


