
Major design decisions Design constraints

CITS4401 Software Requirements and Design
Design decisions and constraints

Lecturer: Arran Stewart

1 / 67

Major design decisions Design constraints

Major design decisions

2 / 67

Major design decisions Design constraints

Re-cap

We mentioned earlier (in the first design lecture) several major aspects of
design which most systems must address:

Concurrency
Does the system have to operate concurrently? If so, how
should this be organised?

Hardware/software mapping
Which subsystems are made/bought/re-used

Persistent data management
How is persistent data to be stored?

Access control
Who can access what?

Software control
Do events have to happen in a particular order? If so, what is it?

Boundary conditions
How are system startup, shutdown and failure handled?

3 / 67

Major design decisions Design constraints

Concurrency

Concurrency

4 / 67

Major design decisions Design constraints

Concurrency

Concurrency

Often, we will want multiple system components to execute at
the same time
This gives rise to potential problems:

How can data data shared among concurrently executing
components be kepts consistent?
How can we ensure that one action does not interfere with
another?

5 / 67

Major design decisions Design constraints

Concurrency

Terminology

Processes are operating system tasks, each of which has their
own set of open files, global data, etc
Threads are threads of execution within a process – they
usually share global data, but have their own run-time stack

6 / 67

Major design decisions Design constraints

Concurrency

Possible solutions

Design for concurrency is a major area all on its own, but a few possible
solutions to the problems of keeping consistency/avoiding interference:

Locks (also “semaphores”, “mutexes”) - can be used to limit access to
shared resources

Critical section: piece of code which accesses a shared
state that must not be concurrently accessed by
another thread

must be kept as small as possible, should not
contain loops

Problems: easy to get wrong; can take too many
locks, too few, wrong locks, or in wrong order;
difficult to recover from errors
Deadlock: two threads are bl

7 / 67

Major design decisions Design constraints

Concurrency

Possible solutions

Software transactional memory - Optimistically try transactions, on
failure, re-try when things may have changed.

Easier to handle errors than locks
No locks, so can’t deadlock
For each task in a transaction, must keep track
of how to undo it

8 / 67

Major design decisions Design constraints

Concurrency

Possible solutions

No shared resources (“actor-based concurrency”) - Some
languages, like Erlang, are designed around the idea
that threads have no shared resources – all interaction
between threads is by sending messages.

Not as familiar to programmers as locks
Usually easier than lock-based

9 / 67

Major design decisions Design constraints

Concurrency

Solutions

For a gentle-ish explanation:

Locks, Actors, And Stm In Pictures

10 / 67

http://adit.io/posts/2013-05-15-Locks,-Actors,-And-STM-In-Pictures.html

Major design decisions Design constraints

Concurrency

UML

Threads:
A thread of control is a path through a set of state diagrams on
which a single object is active at a time.
A thread remains within a state diagram until an object sends
an event to another object and waits for another event
Thread splitting: Object does a non-blocking send of an event.

The task here is to identify concurrent threads and address
concurrency issues.

If an object is an aggregation of other objects, it is possible to
have concurrent state machines.

Design goal: response time, performance.

11 / 67

Major design decisions Design constraints

Concurrency

Concurrency questions

Which objects of the object model are independent?
Does the system provide access to multiple users?
What kind of concurrency control is relevant?

Pessimistic concurrency control (with locking)
Optimistic concurrency control (without locking)

Can a single request to the system be decomposed into
multiple requests? Can these requests be handled in parallel?

12 / 67

Major design decisions Design constraints

Concurrency

Implementing concurrency

Concurrent systems can be implemented on any system that
provides

physical concurrency (hardware), or
logical concurrency (software)

13 / 67

Major design decisions Design constraints

Hardware software mapping

Hardware software mapping

14 / 67

Major design decisions Design constraints

Hardware software mapping

Hardware software mapping

This activity addresses two questions:
How shall we realize the subsystems: Hardware or Software?
How is the object model mapped on the chosen hardware &
software?

Mapping Objects onto Reality: Processor, Memory,
Input/Output
Mapping Associations onto Reality: Connectivity

Much of the difficulty of designing a system comes from
meeting externally-imposed hardware and software constraints.

Certain tasks have to be at specific locations

15 / 67

Major design decisions Design constraints

Hardware software mapping

Mapping the objects

Processor issues:
Is the computation rate too demanding for a single processor?
Can we get a speedup by distributing tasks across several
processors?
How many processors are required to maintain steady state
load?

Memory issues:
Is there enough memory to buffer bursts of requests?

I/O issues:
Do you need an extra piece of hardware to handle the data
generation rate?
Does the response time exceed the available communication
bandwidth between subsystems or a task and a piece of
hardware?

16 / 67

Major design decisions Design constraints

Hardware software mapping

Mapping the subsystems associations: connectivity

Describe the physical connectivity of the hardware
Often the physical layer in ISO’s OSI Reference Model

Which associations in the object model are mapped to physical
connections?
Which of the client-supplier relationships in the analysis/design
model correspond to physical connections?

Describe the logical connectivity (subsystem associations)
Identify associations that do not directly map into physical
connections:
How should these associations be implemented?

ISO – International Standards Organization

OSI – Open Systems Interconnection

17 / 67

Major design decisions Design constraints

Hardware software mapping

Connectivity in distributed systems

If the architecture is distributed, we need to describe the
network architecture (communication subsystem) as well.
Questions to ask

What are the transmission media? (Ethernet, Wireless)
What is the Quality of Service (QoS)? What kind of
communication protocols can be used?
Should the interaction be asynchronous, synchronous or
blocking?
What are the available bandwidth requirements between the
subsystems?

18 / 67

Major design decisions Design constraints

Hardware software mapping

A physical connectivity drawing
DistributedDatabaseArchitecture Tue, Oct 13, 1992 12:53 AM

Application

Client

Application

Client

Application

Client

Communication

Agent for

Application Clients

Communication

Agent for

Application Clients

Communication

Agent for Data

Server

Communication

Agent for Data

Server

Local Data

Server

Global Data

Server

Global

Data

Server

Global

Data

Server

OODBMS

RDBMS

Backbone Network

LAN

LAN

LAN

TCP/IP Ethernet

Physical
connection

Logical
connection

19 / 67

Major design decisions Design constraints

Hardware software mapping

Hardware/software mapping questions

What is the connectivity among physical units?
Tree, star, matrix, ring

What is the appropriate communication protocol between the
subsystems?

Function of required bandwidth, latency and desired reliability
Is certain functionality already available in hardware?
Do certain tasks require specific locations to control the
hardware or to permit concurrent operation?

Often true for embedded systems
General system performance question:

What is the desired response time?

20 / 67

Major design decisions Design constraints

Data management

Data management

21 / 67

Major design decisions Design constraints

Data management

Data management

Some objects in the models need to be persistent
A persistent object can be realized with one of the following
mechanisms

Flat files
Cheap, simple, permanent storage
Low level (Read, Write)
Applications must add code to provide suitable level of
abstraction

Relational database
Powerful, easy to port
Supports multiple writers and readers
Mapping complex object models to relational database is
challenging

Object-oriented database
Provides services similar to relational database
Stores data as objects and associations;
OODBs are slower than relational DBs for typical queries

22 / 67

Major design decisions Design constraints

Data management

Flat files or database?

When should you choose flat files for data storage?
Are the data voluminous (bit maps)?
Do you have lots of raw data (core dump, event trace)?
Do you need to keep the data only for a short time?
Is the information density low (archival files, history logs)?

When should you choose a (relational or OO) database?
Do the data require access at fine levels of details by multiple
users?
Must the data be ported across multiple platforms
(heterogeneous systems)?
Do multiple application programs access the data?
Does the data management require a lot of infrastructure?

23 / 67

Major design decisions Design constraints

Data management

Object-oriented databases

Support all fundamental object modeling concepts
Classes, Attributes, Methods, Associations, Inheritance

Mapping an object model to an OO-database
Determine which objects are persistent.
Perform normal requirement analysis and object design
Create single attribute indices to reduce performance
bottlenecks
Do the mapping (specific to commercially available product).
Example:

In ObjectStore, implement classes and associations by preparing
C++ declarations for each class and each association in the
object model

24 / 67

Major design decisions Design constraints

Data management

Relational databases

Based on relational algebra
Data is presented as 2-dimensional tables. Tables have a
specific number of columns and arbitrary numbers of rows

Primary key: Combination of attributes that uniquely identify a
row in a table. Each table should have only one primary key
Foreign key: Reference to a primary key in another table

SQL is the standard language for defining and manipulating
tables.

25 / 67

Major design decisions Design constraints

Access control

Access control

26 / 67

Major design decisions Design constraints

Access control

Access control

Describes access rights for different classes of actors
Describes how object guard against unauthorized access

27 / 67

Major design decisions Design constraints

Access control

Access control questions

Does the system need authentication?
If yes, what is the authentication scheme?

User name and password? Access control list
Tickets? Capability-based

What is the user interface for authentication?
Does the system need a network-wide name server?
How is a service known to the rest of the system?

At runtime? At compile time?
By communication port number?
By host name?

28 / 67

Major design decisions Design constraints

Access control

5. Decide on software control

Control flow is the sequence of actions in a system. It gives the
order in which things can happen in the system.
Deciding this depends on whether the things can happen

fairly independently and in parallel (threads/tasks) or
only in sequence in a given order (procedural) or
activities one at a time with their order determined by external
events (event driven)

29 / 67

Major design decisions Design constraints

Access control

Guidelines for choosing control flow

activities must occur in a fixed order with little time overlaps
between activities
→ choose procedural control
activities may occur in different orders, as determined by
external requests, but usually one activity at a time
→ choose event driven control (+ central controller)
activities are largely independent and can be time overlapped
→ choose threads

30 / 67

Major design decisions Design constraints

Access control

Procedure-driven control example

module1 module2

module3

op1()

op2()
op3()

op1(), op2(), and op3() are procedure calls

31 / 67

Major design decisions Design constraints

Access control

Event-based system example: MVC

Smalltalk-80 Model-View-Controller
Client/Server Architecture

:Control

:Model :View :View

:View
Model has

changed Update Update

Update

32 / 67

Major design decisions Design constraints

Access control

Centralized vs. decentralized designs

Should you use a centralized or decentralized design?
Centralized Design

One control object or subsystem (“spider”) controls everything
Change in the control structure is very easy
Possible performance bottleneck

Decentralized Design
Control is distributed
Spreads out responsibility
Fits nicely into object-oriented development

33 / 67

Major design decisions Design constraints

Boundary conditions

Boundary conditions

34 / 67

Major design decisions Design constraints

Boundary conditions

Boundary conditions

Most of the system design effort is concerned with steady-state
behavior.
However, the system design phase must also address the
initiation and finalization of the system.

initialisation
termination
failure

35 / 67

Major design decisions Design constraints

Boundary conditions

Boundary questions

Initialization
Describes how the system is brought from an non initialized
state to steady-state (“startup use cases”).

Termination
Describes what resources are cleaned up and which systems are
notified upon termination (“termination use cases”).

Failure
Many possible causes: Bugs, errors, external problems (power
supply).
Good system design foresees fatal failures (“failure use cases”).

36 / 67

Major design decisions Design constraints

Boundary conditions

Boundary questions (cont.)

Initialization
How does the system start up?

What data need to be accessed at startup time?
What services have to be registered?

What does the user interface do at start up time?
How does it present itself to the user?

Termination
Are single subsystems allowed to terminate?
Are other subsystems notified if a single subsystem terminates?
How are local updates communicated to the database?

Failure
How does the system behave when a node or communication
link fails? Are there backup communication links?
How does the system recover from failure? Is this different from
initialization?

37 / 67

Major design decisions Design constraints

Boundary conditions

Summary

We reviewed major activities in system design:

Concurrency identification
Hardware/Software mapping
Persistent data management
Access Control
Software control selection
Boundary conditions

Each of these activities revises the subsystem decomposition to
address a specific issue. Once these activities are completed, the
interface of the subsystems can be defined.

38 / 67

Major design decisions Design constraints

Boundary conditions

Recommended reading

Bruegge & Dutoit, 2010:
§7.4 System Design Alternatives

§7.4.1 Mapping Subsystems to Processors and Components
§7.4.2 Identifying and Storing Persistent Data
§7.4.3 Providing Access Control
§7.4.4 Designing the Global Control Flow
§7.4.5 Identifying Boundary Conditions

39 / 67

Major design decisions Design constraints

Design constraints

40 / 67

Major design decisions Design constraints

Design Goals

When we move from Requirements Analysis into System
Design, we should ensure that we have identified the design
goals for our system
Many design goals can be inferred from the non-functional
requirements or the application domain. Others should be
checked with the client.
Design Goals need to be stated explicitly so that future design
criteria can be made consistently, following the same set of
criteria

41 / 67

Major design decisions Design constraints

Types of Design Goal

There are many desirable qualities which may be design goals
for your system:

performance
dependability
cost
maintenance
end user criteria

Meeting some of these goals may conflict with meeting others -
can you think of an example of conflicting goals ?

42 / 67

Major design decisions Design constraints

Design Goal Example

Classify each design goal below according to performance,
dependability, cost, maintenance, end user criteria

Users must be given feedback within 1 sec of issuing a command
The TicketDistributor must be able to issue train tickets even in
the event of a network failure
The housing of the TicketDistributor must allow for new
buttons to be installed if the number of different fares increases
The AutomatedTellerMachine must withstand dictionary attacks
(i.e. ID numbers discovered by systematic trial)
The user interfaces of the system should prevent users from
issuing commands in the wrong order

43 / 67

Major design decisions Design constraints

Design Goals come from requirements

A functional requirement describes a system service or function.
A non-functional requirement is a constraint placed on the
system or on the development process
Check lists are useful for identifying non-functional
requirements

44 / 67

Major design decisions Design constraints

Type of Non-functional Requirements

User interface and human factors
Documentation
Hardware considerations
Performance characteristics
Error handling and extreme conditions
System interfacing
Quality issues
System modifications
Physical environment
Security issues
Resources and management issues

45 / 67

Major design decisions Design constraints

Non-Functional Requirements Trigger Questions (1)

User interface and human factors
What type of user will be using the system?
Will more than one type of user be using the system?
What sort of training will be required for each type of user?
Is it particularly important that the system be easy to learn?
Is it particularly important that users be protected from making
errors?
What sort of input/output devices for the human interface are
available, and what are their characteristics?

46 / 67

Major design decisions Design constraints

Non-Functional Requirements Trigger Questions (2)

Documentation
What kind of documentation is required?
What audience is to be addressed by each document?

Hardware considerations
What hardware is the proposed system to be used on?
What are the characteristics of the target hardware, including
memory size and auxiliary storage space?

47 / 67

Major design decisions Design constraints

Non-Functional Requirements Trigger Questions (3)

Performance characteristics
Are there any speed, throughput, or response time constraints
on the system?
Are there size or capacity constraints on the data to be
processed by the system?

Error handling and extreme conditions
How should the system respond to input errors?
How should the system respond to extreme conditions?

48 / 67

Major design decisions Design constraints

Non-Functional Requirements Trigger Questions (4)

System interfacing
Is input coming from systems outside the proposed system?
Is output going to systems outside the proposed system?
Are there restrictions on the format or medium that must be
used for input or output?

Quality issues
What are the requirements for reliability?
Must the system trap faults?
Is there a maximum acceptable time for restarting the system
after a failure?
What is the acceptable system downtime per 24-hour period?
Is it important that the system be portable (able to move to
different hardware or operating system environments)?

49 / 67

Major design decisions Design constraints

Non-Functional Requirements Trigger Questions (5)

System Modifications
What parts of the system are likely candidates for later
modification?
What sorts of modifications are expected?

Physical Environment
Where will the target equipment operate?
Will the target equipment be in one or several locations?
Will the environmental conditions in any way be out of the
ordinary (for example, unusual temperatures, vibrations,
magnetic fields, . . .)?

50 / 67

Major design decisions Design constraints

Non-Functional Requirements Trigger Questions (7)

Security Issues
Must access to any data or the system itself be controlled?
Is physical security an issue?

Resources and Management Issues
How often will the system be backed up?
Who will be responsible for the back up?
Who is responsible for system installation?
Who will be responsible for system maintenance?

51 / 67

Major design decisions Design constraints

Non-Functional (Pseudo) Requirements

Non-functional (Pseudo) requirement:
Any client restriction on the solution domain

Examples:
The target platform must be an Android phone
The implementation language must be Java
The documentation standard X must be used
A data-glove must be used
Direct3D must be used
The system must interface to a barcode reader

52 / 67

Major design decisions Design constraints

Evaluating Designs

When is a design correct?
If it can be shown to capture all the functions of the
requirements document
If it captures all the users’ requirements

What makes a design a good design?
It is correct, complete, consistent, realistic and readable

53 / 67

Major design decisions Design constraints

Some Evaluation Criteria

product vs process
differing views: client, developer, user
design goals (from non-functional requirements)
cohesion and coupling in subsystems
comparing designs: evaluation matrix
rationale

54 / 67

Major design decisions Design constraints

Modular design

A design is modular when
each activity of the system is performed by exactly one
component
inputs and outputs of each component are well-defined, in that
every input and output is necessary for the function of that
component
the idea is to minimise the impact of later changes by
abstracting from implementation details

55 / 67

Major design decisions Design constraints

Correct Designs

Does the design correctly capture the requirements?
Are the requirements the right ones?
These questions can be addressed by:

testing the design against both the requirements document and
against user expectations.
analysing the requirements for completeness, consistency,
realism
design review meetings
formal proof that design model D satisfies requirements model R

56 / 67

Major design decisions Design constraints

Correct OO Designs

Can every subsystem be traced back to a use case or
nonfunctional requirement?
Can every use case be mapped to a set of subsystems?
Can every design goal be traced back to a nonfunctional
requirement?
Is every nonfunctional requirement addressed in the system
design model?
Does each actor have an access policy: what data and
functionality is available to each actor?
Is the access policy consistent with the nonfunctional security
requirement?

57 / 67

Major design decisions Design constraints

Complete OO Designs

Has every requirement and every system design issue been
addressed?
Have the boundary conditions been handled?
Was there a walkthrough of the use cases to identify missing
functionality in the system design?
Have all use cases been examined and assigned a control
object?
Have all aspects of system design been addressed?
Are all subsystems well-defined?

58 / 67

Major design decisions Design constraints

Consistent OO Designs

Does the design contain any contradictions?
Are conflicting design goals prioritized?
Are there design goals that violate a nonfunctional
requirement?
Are there multiple subsystems or classes with the same name?
Are collections of objects exchanged among subsystems in a
consistent manner?

59 / 67

Major design decisions Design constraints

Realistic OO Designs

Can the design be implemented?
Are there any new technologies or components in the system?
Have the appropriateness and robustness of these technologies
been investigated?
Have performance and reliability requirements been reviewed in
the context of the subsystem decomposition?

60 / 67

Major design decisions Design constraints

Concurrency Issues

Contention: 2 processes competing for access to the same
resource

e.g. writing to a network bus such as the CANbus
Deadlock: 2 processes are waiting for each other and therefore
can make no progress

e.g. the dining philosophers each holding one fork
Mutual exclusion: a resource must only be accessed by one
processes at a time

e.g. crediting and debiting a bank account

61 / 67

Major design decisions Design constraints

Readable OO Designs

Can developers not involved in the system design understand
the model?
Are subsystem names understandable?
Do entities with similar names denote similar phenomena?
Are all entities described at the same level of detail?

62 / 67

Major design decisions Design constraints

Design Evaluation Matrix: a tool for comparing different
designs

Characteristics for comparison include:
easy to change algorithm
easy to change data
easy to change function
good performance
ease of reuse
modularity, testability, maintainability, efficiency,
ease of understanding, ease of modification, consistency

63 / 67

Major design decisions Design constraints

Comparing Designs - Measures

We can compare two different designs by
identifying a list of relevant design characteristics c0 to cn and
(optionally) a weight w0 to wn for each
checking for each design characteristic whether the given design
exhibits it or not: ei = 0 or ei = 1
Quality = e0 * w0 + e1 * w1 + . . . + en * wn

Suitable characteristics include: modularity, testability,
maintainability, efficiency, ease of understanding/modification,
consistency . . .

64 / 67

Major design decisions Design constraints

Design Evaluation Matrix Example

Design

Characteristic

Weight Design 1 Design 2

Portability 5 1 0

Easy to use & robust 2 1 1

Response time 1 0 1

TOTAL 8 max 7 3

7

65 / 67

Major design decisions Design constraints

Now you try one

List up to 4 characteristics you would use in a design
evaluation matrix for an automatic bank teller system
Identify weights for each characteristic giving reasons for your
choices
What information do you need to evaluate each characteristic?

66 / 67

Major design decisions Design constraints

Recommended reading

Bruegge & Dutoit, 2010:
§4.4.7 identifying non-functional requirements
§6.4.2 identifying design goals

67 / 67

	Major design decisions
	Concurrency
	Hardware software mapping
	Data management
	Access control
	Boundary conditions

	Design constraints

