
Design patterns cont’d Using Rationale to Document Designs

CITS4401 Software Requirements and Design
Design Patterns cont’d

Lecturer: Arran Stewart

1 / 70



Design patterns cont’d Using Rationale to Document Designs

Design patterns cont’d

2 / 70



Design patterns cont’d Using Rationale to Document Designs

Towards a Pattern Taxonomy

Structural Patterns
Adapters, Bridges, Façades and Proxies are variations on a
single theme:

They reduce the coupling between two or more classes
They introduce an abstract class to enable future extensions
Encapsulate complex structures

Behavioural Patterns
Concerned with algorithms and the assignment of
responsibilities between objects: Who does what?
Characterize complex control flow that is difficult to follow at
runtime.

Creational Patterns
Abstract the instantiation process.
Make a system independent from the way its objects are
created, composed and represented.

3 / 70



Design patterns cont’d Using Rationale to Document Designs

A Pattern Taxonomy

Pattern

Structural

Pattern
Behavioral

Pattern

Creational

Pattern

Adapter Bridge Facade Proxy

Command Observer Strategy

Abstract

Factory

Builder

Pattern

4 / 70



Design patterns cont’d Using Rationale to Document Designs

Proxy pattern

Proxy pattern

5 / 70



Design patterns cont’d Using Rationale to Document Designs

Proxy pattern

Proxy pattern

What is expensive?
Object Creation
Object Initialization

Defer object creation and object initialization to the time that
you need the object
Proxy pattern:

Uses another object (“the proxy”) that acts as a stand-in for
the real object
Reduces the cost of accessing objects
The proxy creates the real object only if the user asks for it

6 / 70



Design patterns cont’d Using Rationale to Document Designs

Proxy pattern

Proxy pattern

Interface inheritance is used to specify the interface shared by
Proxy and RealSubject.
Delegation is used to catch and forward any accesses to the
RealSubject (if desired)
Proxy patterns can be used for lazy evaluation and for remote
invocation.

Subject

Request()

RealSubject

Request()

Proxy

Request()

realSubject

7 / 70



Design patterns cont’d Using Rationale to Document Designs

Proxy pattern

Proxy Applicability

Remote Proxy
Local representative for an object in a different address space
Caching of information: Good if information does not change
too often

Virtual Proxy
Object is too expensive to create or too expensive to download
Proxy is a stand-in

Protection Proxy
Proxy provides access control to the real object
Useful when different objects should have different access and
viewing rights for the same document.
Example: Grade information for a student shared by
administrators, teachers and students.

8 / 70



Design patterns cont’d Using Rationale to Document Designs

Proxy pattern

Virtual Proxy example

Images are stored and loaded separately from text
If a RealImage is not loaded a ProxyImage displays a grey
rectangle in place of the image
The client cannot tell that it is dealing with a ProxyImage
instead of a RealImage
A proxy pattern can be easily combined with a Bridge

Image
boundingBox()

draw()

realSubject RealImage
boundingBox()

draw()

ProxyImage
boundingBox()

draw()

9 / 70



Design patterns cont’d Using Rationale to Document Designs

Proxy pattern

Before

10 / 70



Design patterns cont’d Using Rationale to Document Designs

Proxy pattern

After

11 / 70



Design patterns cont’d Using Rationale to Document Designs

Observer pattern

Observer pattern

12 / 70



Design patterns cont’d Using Rationale to Document Designs

Observer pattern

Observer pattern

“Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.”
Also called “Publish and Subscribe”
The Observer pattern:

Maintains consistency across redundant state
Optimizes batch changes to maintain consistency

13 / 70



Design patterns cont’d Using Rationale to Document Designs

Observer pattern

Observer pattern (continued)

9DesignPatterns2.ppt

Observers

Subject

14 / 70



Design patterns cont’d Using Rationale to Document Designs

Observer pattern

Observer pattern (continued)

The Subject represents the actual state, the Observers
represent different views of the state.
Subject is a super class (needs to store the observers vector)
not an interface.

Observer
update()

Subject
attach(observer)

detach(observer)

notify()

ConcreteSubject
getState()

setState(newState)

subjectState

ConcreteObserver
update()

observerState

observers

subject

*

15 / 70



Design patterns cont’d Using Rationale to Document Designs

Observer pattern

Sequence diagram

getState()

aListViewanInfoViewaFile

notify()

Attach()
Attach()

“foo”

setState(“foo”)

update()
update()

16 / 70



Design patterns cont’d Using Rationale to Document Designs

Observer pattern

Observer pattern implementation in Java
// import java.util;

public class Observable extends Object {

public void addObserver(Observer o);

public void deleteObserver(Observer o);

public boolean hasChanged();

public void notifyObservers();

public void notifyObservers(Object arg);

}

public interface Observer {

public abstract void update(Observable o, Object arg);

}

public class Subject extends Observable{

public void setState(String filename);

public string getState();

}

17 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Abstract Factory pattern

18 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Abstract Factory motivation

Consider a user interface toolkit that supports multiple looks
and feel standards such as Motif, Windows 10 or the finder in
MacOS.

How can you write a single user interface and make it portable
across the different look and feel standards for these window
managers?

Consider a facility management system for a smart house that
supports different control systems such as Siemens’ Instabus,
Johnson & Control Metasys or Zumtobel’s proprietary standard.

How can you write a single control system that is independent
from the manufacturer?

19 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Abstract Factory

20 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Applicability for Abstract Factory pattern

Independence from initialization or representation:
The system should be independent of how its products are
created, composed or represented

Manufacturer independence:
A system should be configured with one of multiple family of
products
You want to provide a class library for a customer (“facility
management library”), but you don’t want to reveal what
particular product you are using.

Constraints on related products
A family of related products is designed to be used together and
you need to enforce this constraint

Cope with upcoming change:
You use one particular product family, but you expect that the
underlying technology is changing very soon, and new products
will appear on the market.

21 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Abstract Factory design pattern to different intelligent
house platforms

22 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Other design patterns

Singleton - used to ensure a class has only one instance and
provide a global access point to it. (e.g. static variables of class
in java).
Builder - Separate the construction of a complex object from
its representation so the same process can create different
representations.
Flyweight - Use sharing to support large numbers of
fine-grained objects efficiently.
Command - Encapsulate requests as objects, allowing you to
treat them uniformly.
Iterator - Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying
representation.
State - Allow an object to alter its behavior when its internal
state changes. The object will appear to change its class.

23 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Summary

Structural Patterns
Focus: How objects are composed to form larger structures
Problems solved:

To realize new functionality from old functionality,
To provide flexibility and extensibility

Behavioral Patterns
Focus: Algorithms and the assignment of responsibilities to
objects
Problem solved:

Overly tight coupling to a particular algorithm
Creational Patterns

Focus: Creation of complex objects
Problem solved:

Hide how complex objects are created and put together

24 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Summary (2)

Design Pattern Purpose

Abstract Factory Encapsulating platform

Adapter Wrapping around legacy code

Bridge Allowing for alternate implementation

Command Encapsulating control flow

Composite Representing recursive hierarchies

Façade Encapsulating subsystems

Observer Decoupling entities from views

Proxy Encapsulating expensive objects

Strategy Encapsulating algorithms

25 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Natural language heuristics for selecting design patterns

Phrase Design Pattern

• “Manufacturer independence” 
• “Platform independence” 

Abstract factory

• “Must comply with existing interface” 
• “Must reuse existing legacy component” 

Adapter

• “Must support future protocols” Bridge

• “All commands should be undoable” 
• “All transactions should be logged” 

Command

• “Must support aggregate structures” 
• “Must allow for hierarchies of variable depth and width”

Composite

• “Policy and mechanisms should be decoupled”. 
• “Must allow different algorithms to be interchanged at runtime.”

Strategy

26 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Patterns conclusion

Design patterns
Provide solutions to common problems.
Lead to extensible models and code.
Can be used as is or as examples of interface inheritance and
delegation.
Apply the same principles to structure and to behavior.

Design patterns solve all your software engineering problems???
Reading and studying design patterns will give you a library of
solutions, and an awareness of consequences in object oriented
software design.

27 / 70



Design patterns cont’d Using Rationale to Document Designs

Abstract Factory pattern

Further reading

Bruegge & Dutoit, 2010: Chapter 8 and Appendix A
Gamma, Helm, Johnson, Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley,
Reading, MA, 1994
http://www.fluffycat.com/java/patterns.html is a reference
and example site for Design Patterns in Java. It contains links
to Amazon.com books on design patterns too.
Design Pattern Card:
http://teaching.csse.uwa.edu.au/units/CITS4401/readings/designpatternscard.pdf

28 / 70



Design patterns cont’d Using Rationale to Document Designs

Using Rationale to Document Designs

29 / 70



Design patterns cont’d Using Rationale to Document Designs

Overview

Purpose of design documentation
Good and bad documentation

30 / 70



Design patterns cont’d Using Rationale to Document Designs

Purpose of design documentation

Why write design documentation?

Explain your design choices to later developers
Ensure they don’t duplicate research or work you’ve already
done

31 / 70



Design patterns cont’d Using Rationale to Document Designs

Purpose of design documentation

Suppose you need a regular expression library for your project, and
the language you are working with (C++, say) doesn’t have one built
in.

You might spend significant time evaluating alternatives.

Especially if problems occur with the library down the track, it can
be very frustrating to later developers if you don’t record

what alternatives were considered?
why was package X not chosen?
what would be the consequences for the system of changing
the library used?

32 / 70

https://en.wikipedia.org/wiki/Regular_expression


Design patterns cont’d Using Rationale to Document Designs

Purpose of design documentation

Provide newcomers to the development team with an
understanding of the system, its architecture, and design
choices made

Sometimes, teams document their methods and classes well – but
don’t explain how they fit together overall, or what the major
components of the system are.

This can make it very difficult for new members of the development
team to know how to navigate their way through the codebase, or
understand what the major components are.

33 / 70



Design patterns cont’d Using Rationale to Document Designs

Purpose of design documentation

Ensure team has a shared understanding of decisions made

Writing down design decisions helps make explicit exactly what they
are – otherwise, different team members might have different ideas
about what was decided, and why.

34 / 70



Design patterns cont’d Using Rationale to Document Designs

Audience

Design documentation records the design choices you made, and
reasons for them. It records major choices made about the
architecture of the system, and may contain design models (for
instance, UML diagrams).

It is primarily written for architects, developers and maintainers.

Other sorts of documentation you may encounter, with other
audiences:

User documentation. Written for end users and/or system
administrators.
API documentation. Written for internal, and possibly
external, developers.
Cookbooks/examples. Working code examples, written for
developers.

35 / 70



Design patterns cont’d Using Rationale to Document Designs

Good and bad design documentation
Design documentation can be good or bad.

Just because there is a lot of documentation doesn’t mean it is
good!

Some qualities of bad design documentation:

Hard to navigate
hard to find what you need

Out of date
no longer matches up with the current code

Incomplete/too little detail
doesn’t explain major decisions

Too much detail
major decisions are hidden in masses of unimportant detail

Never used
consumed time and effort on the part of the people who wrote
it, but was never used

Contradictory
different portions of the documentation say contradictory things

Badly written/unclear
It is difficult for readers to understand what is meant

36 / 70



Design patterns cont’d Using Rationale to Document Designs

Good design documentation

These problems can be overcome by thinking carefully about who
will use the design documentation, and how.

37 / 70



Design patterns cont’d Using Rationale to Document Designs

Navigation

Hard to navigate

It is very unlikely anyone will read all your design documentation
“cover to cover”.

They most likely will want to look up an answer to a specific
question (“Why didn’t we use regular expression library X? It’s
much faster”).

So you need to make sure your design documentation is easy to
navigate, and easily searchable.

38 / 70



Design patterns cont’d Using Rationale to Document Designs

Navigation

Hard to navigate

Make sure you provide:

A table of contents
An index (if in PDF format or hard copy) or search facility
A glossary and/or list of synonyms – especially if the
terminology you are using is not widely known, or is ambiguous.
(E.g. Terms like “mock”, “wrapper”, “module” or “package”
can mean different things to different people.)

39 / 70



Design patterns cont’d Using Rationale to Document Designs

Navigation

Hard to navigate

Many teams use facilities like wikis to host their design
documentation.

Advantages:

Easy to update
Easy to search

Disadvantage:

Can be hard to see the whole documentation “at a glance”
Hard to tell if search result is still up to date

40 / 70

https://en.wikipedia.org/wiki/Wiki


Design patterns cont’d Using Rationale to Document Designs

Current

Out of date

To be more precise – what is bad is not documentation that is
out of date, but the situation where you can’t tell if it’s out of
date or not.
Then you have no idea if it’s accurate or not, which is worse
than documentation which referred to an older version, but at
least was accurate and clearly labelled.

41 / 70



Design patterns cont’d Using Rationale to Document Designs

Current

Out of date

Recommendation:

Label all your design documentation with the version number,
and ideally the version control commit ID, that it relates to.
The documentation can be checked into version control with
your code.
Then if people read it when the software is at version 2.3, and
they can see your design documentation relates to version 1.0,
they will at least know that it might be out of date – it is likely
major changes have occurred since then.

42 / 70



Design patterns cont’d Using Rationale to Document Designs

Completeness

Incomplete/too little detail
Too much detail
Never used

It’s important to ensure your documentation contains enough detail,
contains the right amount of detail, ins’t contradictory, and will
actually be useful.

43 / 70



Design patterns cont’d Using Rationale to Document Designs

Completeness

Incomplete/too little detail
Too much detail
Never used

Recommendations:

You don’t need to justify absolutely every design decision.
That will lead to too much detail (and your documentation
may never be used).

44 / 70



Design patterns cont’d Using Rationale to Document Designs

Completeness

Incomplete/too little detail
Too much detail
Never used

One suggestion (from Pfleeger et al) – consider the following when
deciding whether to document the rationale for a decision:

Was signifcant time spent considering different options?
Is the design decision critical to achieving a particular
requirement?
Is the decision counterintuitive, or does it raise questions?
Would the decision be costly to change?

45 / 70



Design patterns cont’d Using Rationale to Document Designs

Consistency

Contradictory

The more documentation you write, and the more your different
documents overlap, the more chance there is you may state
contradictory things in the documentation.

Try to ensure that:

each document has a clear purpose
the documents don’t overlap with other documents in their
purpose or scope
you only record information that is likely to be needed

46 / 70



Design patterns cont’d Using Rationale to Document Designs

Consistency

Contradictory

Carefully recording what version the documentation relates to (as
recommended previously) will also help – what appears to be a
contradiction might simply be information that differs between
versions.

47 / 70



Design patterns cont’d Using Rationale to Document Designs

Clarity and writing quality

Badly written/unclear

Documentation that is badly written or unclear will not be useful.

Many development teams carefully review code before it is
committed to version control, but do not review their
documentation.

Both should be done! The documentation should be reviewed for
quality and correctness by someone other than the original author.

48 / 70



Design patterns cont’d Using Rationale to Document Designs

Clarity and writing quality

Badly written/unclear

Reviewers should ask themselves:

Does this document have a clear purpose and scope?
Is it correct?
Are design decisions well-justified?
Are the given explanations clear and succinct?

49 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale overview

Rationale is the justification of decisions
Rationale is critical in two areas: it supports

decision making and
knowledge capture

Rationale is important when designing or updating
(e.g. maintaining) the system and when introducing new staff

50 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale helps deal with change

Improve maintenance support
Provide maintainers with design context

Improve learning
New staff can learn the design by replaying the decisions that
produced it

Improve analysis and design
Avoid duplicate evaluation of poor alternatives
Make consistent and explicit trade-offs

51 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale activities

Rationale includes
the issues that were addressed,
the alternative proposals which were considered,
the decisions made for resolution of the issues,
the criteria used to guide decisions and
the arguments developers went through to reach a decision

52 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale (1)

Issues
Each decision corresponds to an issue that needs to be solved.
Issues are usually phrased as questions: How . . . ?

Proposals / Alternatives
Possible solutions that could address the issue under
consideration. Includes alternatives that were explored but
discarded.

53 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale (2)

Criteria – Desirable qualities that the selected solution should
satisfy. For example,

Requirements analysis criteria include usability, number of input
errors per day
Design criteria include reliability, response time
Project management criteria include trade-offs such as timely
delivery vs quality

54 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale (3)

Arguments The discussions which took place in decision
making as developers discover issues, try solutions, and argue
their relative benefits.
Resolution The decision taken to resolve an issue. An
alternative is selected which satisfies the criteria, supported by
arguments for that decision.

55 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale exercise

Read the excerpt provided in the next slide from the design
documents for an accident management system (B & D
Chapter 12)
The excerpt presents the rationale for using a relational
database for permanent storage. The argument in presented in
prose. Rewrite it in terms of

issues, proposals, arguments, criteria and resolutions
Which version of the document (free prose or issue model)
would be easiest to work with during, say, system maintenance?
Why?

56 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale exercise (modified from B&D)

One fundamental issue in database design was database engine realization. The initial non-functional requirements
on the database subsystem insisted on the use of an object-oriented database for the underlying engine. Other
possible options include using a relational database, or a file system. An object-oriented database has the
advantages of being able to handle complex data relationships and is fully buzzword compliant. On the other hand,
object-oriented databases may be sluggish for large volumes of data or high-frequency accesses. Furthermore,
existing products do not integrate well with CORBA, because that protocol does not support specific programming
language features such as Java associations. Using a relational database offers a more robust engine with higher
performance characteristics and a large pool of experience and tools o draw on. Furthermore, the relational data
model integrates nicely with CORBA. On the downside, this model does not easily support complex data
relationships. The third option was proposed to handle specific types of data that are written once and read
infrequently. This type of data (including sensor readings and control outputs) has few relationships with little
complexity and must be archived for extended period of time. The file system option offers an easy archival
solution and can handle large amounts of data. Conversely, any code would need to be written from scratch,
including serialization of access. We decided to use only a relational database, based on the requirements to use
CORBA and in light of the relative simplicity of the relationships between the system’s persistent data.

57 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale exercise (modified from B&D)

Issue: How to realize database engine?
Proposals:

P1: use a Object Oriented database
P2: use a relational database
P3: use a file system

Arguments:
P1:

A+ is able to handle complex data relationship.
A+ is fully buzzword compliant.
A- may be sluggish for large volumes of data or high-frequency
accesses.
A- does not integrate well with CORBA.

58 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale exercise (modified from B&D)

P2: Use a relational DB
A+ offers a more robust engine with high performance
characteristics.
A+ offers a large pool of experience and tools to draw on.
A+ integrates well with CORBA.
A- does not easily support complex data relationships.
P3: Use a file system

A+ handles data that are written once and read infrequently
(including sensor readings and control outputs which have few
relationships).
A+ is suitable for data that must be archived for long period of
time.
A+ can handle large amounts of data.
A- needs to write code from scratch.

59 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale exercise (modified from B&D)

Criteria: Requirement to use CORBA
Resolution: Use a relational database (proposal 2), based on
the criteria and in light of the relative simplicity of the system’s
persistent data relationships.

60 / 70



Design patterns cont’d Using Rationale to Document Designs

Rationale in practice : record and replay

Facilitator posts an agenda
Discussion items are issues

Participants respond to the agenda
Proposed amendments are proposals or additional issues

Facilitator updates the agenda and facilitates the meeting
The scope of each discussion is a single issue tree

Minute taker records the meeting
The minute taker records discussions in terms of issues,
proposals, arguments, and criteria.
The minute taker records decisions as resolutions and action
items.

61 / 70



Design patterns cont’d Using Rationale to Document Designs

A Record and replay example: database discussion agenda

The agenda include 3 issues as the discussion items:
I[1] Which policy for retrieving tracks from the database?
I[2] Which encoding for representing tracks in transactions?
I[3] Which query language for specifying tracks in the database
request?

62 / 70



Design patterns cont’d Using Rationale to Document Designs

Record and replay example: database discussion

I[1] Which policy for retrieving tracks from the database?
Jim: How about we just retrieve the track specified by the
query? It is straightforward to implement and we can always
revisit it if it is too slow.
Ann: Prefetching neighboring tracks would not be much
difficult and way faster.
Sam: During route planning, we usually need the neighbor
tracks anyway. Queries for route planning are the most
common queries.
Jim: Ok, let’s go for the pre-fetch solution. We can revert to
the simpler solution if it gets too complicated.

63 / 70



Design patterns cont’d Using Rationale to Document Designs

Record and replay example: database discussion minutes

I[1] Which policy for retrieving tracks from the database?
P[1.1] Single tracks!
A- Lower throughput.
A+ Simpler.
P[1.2] Tracks + neighbors!
A+ Overall better performance: during route planning, we
need the neighbors anyway.
{ref: 31/01/2016 routing meeting}
R[1] Implement P[1.2]. However, the pre-fetch should be
implemented in the database layer, allowing use to encapsulate
this decision. If all else fails, we will fall back on P[1.1].

64 / 70



Design patterns cont’d Using Rationale to Document Designs

Levels of rationale

No rationale captured
Rationale is only present in memos, online communication,
developers’ memories

Rationale reconstruction
Rationale is documented in a document justifying the final
design

Rationale capture
Rationale is documented during design as it is developed

Rationale integration
Rationale drives the design

65 / 70



Design patterns cont’d Using Rationale to Document Designs

Agile development and documentation

In 2001, the “Agile Manifesto” was drafted, which captured four
major principles for project management, with the goal of
developing better software:

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

66 / 70



Design patterns cont’d Using Rationale to Document Designs

Agile development and documentation

Even if you adopt an agile methodology – maintenance will still
need to be done!
And future developers will still need to know why you made the
choices you did.

67 / 70



Design patterns cont’d Using Rationale to Document Designs

Agile development and documentation

One approach if you are using an agile methodolgy is to do design
documentation when software is nearly ready to be handed over to a
client.

The assumption is that earlier in the project, the design is likely to
still be too much in flux for it to be a good use of time to document
it.

68 / 70



Design patterns cont’d Using Rationale to Document Designs

Open issues for rationale

Formalizing knowledge is costly
Maintaining a consistent design model is expensive.
Capturing and maintaining its rationale is worse.

The benefits of rationale are not perceived by current
developers

If the person who does the work is not the one who benefits
from it, the work will have lower priority.
40-90% of off-the-shelf software projects are terminated before
the product ships.

Capturing rationale is usually disruptive
Current approaches do not scale to real problems (e.g.,
rationale models are large and difficult to search)

69 / 70



Design patterns cont’d Using Rationale to Document Designs

Recommended reading

Bruegge and Dutoit, 2010:
Chapter 12
§7.4.7 Reviewing System Design

70 / 70


	Design patterns cont'd
	Proxy pattern
	Observer pattern
	Abstract Factory pattern

	Using Rationale to Document Designs

