CITS4401 Software Requirements and Design
System Design Process

Lecturer: Arran Stewart

1/40

Design process cont'd

Design process cont’'d

2/40

Design process cont'd

System design process

o We've said previously that the design process helps us go from
a requirements model of our system, to implementation, in a
managed way.

o It is a creative process concerned with how the system will be
implemented, and its activities include architecture design
(deciding on high-level structure and behaviour), interface
design and class design.

@ The design we end up with should describe the architecture or
structure of the system, its behaviour, and the classes and
algorithms needed to implement the system requirements.

3/40

Design process cont'd

System design process

In general, design is more “messy” a process than analysis.
Why is design difficult?

@ Analysis: Focuses on the application domain

@ Design: Focuses on the solution domain
o Design knowledge is a moving target
o The reasons for design decisions are changing very rapidly

4/40

Design process cont'd

System design process

o Analysis depends on the problem domain.

@ When doing design, we add the implementation domain
(i.e. hardware, aspects of the language being used, the
computers being run on e3tc)

o We worry about how to map the application domain into the
existing hardware.

5/40

Design process cont'd

System design process

If someone asks us, “What is the design of the system?” — it is the
decisions (hopefully documented) that we have made about:

o what the subsystems are

@ how they are to be implemented (in hardware vs software,
using off-the-shelf components), etc

@ how data is managed

@ what the access control policy is

@ what the system assumes about external
systems/users/boundaries.

6/40

Design process cont'd

Design models

@ We can think of the design as consisting of a set of increasingly
refined /detailed design models of the system, that record the
decisions we have made.

o Different parts of the design may be specified texctually, or
using graphical notations such as UML diagrams (class
diagrams, sequence diagrams, state charts, etc).

@ Program description languages or pseudocode may be
employed to define the algorithms and data structures used.

7/40

Design process cont'd

Design models

Many of the same tools we used in analysis, will be useful in design
— but now we are focused on constructing a solution to a problem
(not just modeling the problem).

By way of example:

o We used class diagrams to represent analysis entities and the
relationship between them

@ We can use class diagrams again in our design; except now, we
aim to represent classes that we will actually implement. These
will likely be different from the classes we came up with in
analysis — additional classes are usually needed.

8/40

Design process cont'd

System design models

o These design models describe the architecture or structure of
the system, its behaviour, and the classes and algorithms
required to implement the system requirements.

9/40

Design process cont'd

Making uses of our analysis

(*]

Nonfunctional requirements —
o Design Goals Definition
o Functional model —
o System decomposition (Selection of subsystems based on
functional requirements, cohesion, and coupling)
Object model —
o Hardware/software mapping
o Persistent data management
o Dynamic model —
o Concurrency
o Global resource handling
o Software control
@ Subsystem Decomposition
o Boundary conditions

(7]

10/40

Design process cont'd

Design patterns

@ One way we manage complexity in design is by looking for
opportunities to re-use design patterns — the next topic we look
at.

11/40

Design patterns

Design patterns

12/40

Design patterns

QOutline

@ What are Design Patterns?

o A design pattern describes a problem which occurs over and
over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use the
this solution a million times over, without ever doing it the
same twice

o Design Patterns
o Usefulness of design patterns
o Design Pattern Categories

o Patterns covered in this lecture

o Facade: Unifying the interface to a subsystem.

o Adapter: Interfacing to existing systems (legacy systems)

o Bridge: Interfacing to existing and future systems

13/40

Design patterns

Why Use Design Patterns

@ Reuse: Once a design pattern has been verified, it can be used
in any number of ways in a given context.

@ Common Vocabulary: Design patterns give software designers a
common vocabulary that concisely encapsulates solutions to
design problems.

o Easy to modify: Designs patterns are easy to modify to apply
to a particular problem. The solutions can also be modified to
give flexibility with minimal risk.

14/40

Design patterns

Elements of a Pattern

@ The Pattern Name encapsulates a well known solution to a
design problem, and increases our design vocabulary.

o The Problem describes when to apply the pattern. It gives the
context of the pattern, and possibly some pre-conditions to
ensure the pattern will be effective.

@ The Solution describes the elements that make up the design,
their relationships, responsibilities, and collaborations. The
solution is a template, that can be modified to apply to range
of situations.

@ The Consequences are the results and trade-offs of applying the

pattern. These are critical for evaluating the costs and benefits

of applying a pattern.

[Gamma et al 95]

(]

15/40

Design patterns

Reuse

("]

Main goal:
o Reuse knowledge from previous experience to current problem
o Reuse functionality which is already available
Composition (also called Black Box Reuse)
o New functionality is obtained by aggregation
o The new object with more functionality is an aggregation of
existing components
Inheritance (also called White-Box Reuse)
o New functionality is obtained by inheritance.
Three ways to get new functionality:
o Implementation inheritance
o Interface inheritance
o Delegation

(]

(7]

(]

16 /40

Design patterns

Implementation Inheritance vs Interface Inheritance

@ Implementation inheritance
o Also called class inheritance
o Goal: Extend an applications’ functionality by reusing
functionality in parent class
o Inherit from an existing class with some or all operations already
implemented
o Interface inheritance
o Also called subtyping
o Inherit from an abstract class with all operations specified, but
not yet implemented

17/40

Design patterns

Implementation Inheritance

A very similar class is already implemented that does almost the
same as the desired class implementation.

UExample: | have a List class, | List .
need a Stack class. How about Add() ®
Remove()

sub-classing the Stack class
from the List class and providing I

three methods, Push() and 4%
Pop(), Top()?

“Already
implemented”

Push ()
Pop()
Top()

YProblem with implementation inheritance:

Some of the inherited operations might exhibit unwanted behavior. What happens if
the Stack user calls Remove() instead of Pop()?

18/40

Design patterns

Delegation

o Delegation is a way of making composition (for example
aggregation) as powerful for reuse as inheritance

@ In Delegation two objects are involved in handling a request
o A receiving object delegates operations to its delegate.
o The developer can make sure that the receiving object does not
allow the client to misuse the delegate object

19/40

Design patterns

Delegation or Inheritance?

o Delegation
o Pro:
o Flexibility: Any object can be replaced at run time by another
one (as long as it has the same type)
o Con:
o Inefficiency: Objects are encapsulated.
o Inheritance
o Pro:
o Straightforward to use
o Supported by many programming languages
o Easy to implement new functionality

o Inheritance exposes the details of a parent class to its subclasses

o Any change in the parent class implementation forces the
subclass to change (which requires recompilation of both)

20/ 40

Design patterns

Delegation instead of Inheritance

Delegation: Catching an operation and sending it to another object.

List
Add Stack ;
[:Q :Rerrg())ve() ﬁ List
4 +Push() Tﬁg"eo
| Stack | +Pop()
+Top()

+Push()

+Pop()

+Top()

21/40

Design patterns

Towards a Pattern Taxonomy

@ Structural Patterns
o Adapters, Bridges, Facades and Proxies are variations on a
single theme:
o They reduce the coupling between two or more classes
o They introduce an abstract class to enable future extensions
o Encapsulate complex structures
o Behavioural Patterns
o Concerned with algorithms and the assignment of
responsibilities between objects: Who does what?
o Characterize complex control flow that is difficult to follow at
runtime
o Creational Patterns
o Abstract the instantiation process.
o Make a system independent from the way its objects are
created, composed and represented.

22/40

Design patterns

Structural patterns: Facade, Adapter, Bridge

@ A subsystem consists of
e an interface object
o a set of application domain objects (entity objects) modeling
real entities or existing systems
o Some of the application domain objects are interfaces to
existing systems
@ one or more control objects
o Realization of Interface Object: Facade
o Provides the interface to the subsystem
o Interface to existing systems: Adapter or Bridge
o Provides the interface to existing system (legacy system)
o The existing system is not necessarily object-oriented!

23 /40

Design patterns

Facade Pattern

o Provides a unified interface to a set of objects in a subsystem.
o A facade defines a higher-level interface that makes the

subsystem easier to use (i.e. it abstracts out the gory details)
o Facades allow us to provide a closed architecture

el ==

| _Facade |

==

24/40

Design patterns

Open vs Closed Architecture

@ Open architecture:
o Any client can see into the vehicle subsystem and call on any

component or class operation at will.
@ Why is this good?
o Efficiency

@ Why is this bad?
o Can't expect the caller to understand how the subsystem works

or the complex relationships within the subsystem.
o We can be assured that the subsystem will be misused, leading

to non-portable code

25 /40

Design patterns

Open vs Closed Architecture

VIP Subsystem

26 /40

Design patterns

Realizing a Closed Architecture with a Facade

@ The subsystem decides exactly how it is accessed.

@ No need to worry about misuse by callers

@ The subsystem components can still be accessed directly.

o If a facade is used the subsystem can be used in an early integration
test

o We need to write only a driver

27 /40

Design patterns

Realizing a Closed Architecture with a Facade

VIP Subsystem

\

Vehicle Subsystem API

Seat — Card I:I

AIM SA/RT

28/40

Design patterns

Adapter Pattern

Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces

Used to provide a new interface to existing legacy components
(Interface engineering, reengineering).

Also known as a wrapper

Two adapter patterns:

o Class adapter:
o Uses multiple inheritance to adapt one interface to another

o Object adapter:
o Uses single inheritance and delegation

o We will mostly use object adapters and call them simply
adapters

(]

(]

e o

29/40

Design patterns

Adapter pattern

o Delegation is used to bind an Adapter and an Adaptee

o Interface inheritance is use to specify the interface of the
Adapter class.

o Target and Adaptee (usually called legacy system) pre-exist the

Adapter.
Target Adaptee
Client
Request() ExistingRequest()
2
| adaptee
Adapter

Request()

30/40

Design patterns

Adapter pattern example

public class ServicesEnumeration implements Enumeration {

private RegisteredServices adaptee;
public boolean hasMoreElements() {

return this.currentServiceldx <= adaptee.numServices();
}
public Object nextElement() {

if (!this.hasMoreElements()) {

throw new NoSuchElementException();

}

return adaptee.getService(this.currentSerrviceldx++);
}
/] ..

31/40

Design patterns

Adapter pattern example

Client

Enumeration . .
RegisteredServices |
hasMoreElements() o tgzz?:g:;ezg;)_
nextElement() 8 ’

I—| adaptee

ServicesE .
hasMoreElements()
nextElement()

32/40

Design patterns

Adapter pattern example

(Target)
%
DrawingEditor Shape
. d
(Client) f W& AL

(Adapter).m_ﬁ_,,,,,“..,.... |
TextShape Triangle Circle
draw() draw() draw()

The draw() method

TextDrawingToolkit of TextShape calls

someMethod() someMethod() to

(Adaptee)

do the drawing

33/40

Design patterns

Adapter vs Bridge

o Similarities:
o Both used to hide the details of the underlying implementation.
o Difference:
o The adapter pattern is geared towards making unrelated
components work together
o Applied to systems after they're designed (reengineering,
interface engineering).
o A bridge, on the other hand, is used up-front in a design to let
abstractions and implementations vary independently.
o Green field engineering of an “extensible system”
o New “beasts” can be added to the “object zoo", even if these
are not known at analysis or system design time.

34/40

Design patterns

Bridge Pattern

Abstraction ’ Implementor
/\

I 1

Refined Abstraction Concrete Concrete
Implementor Implementor
A B

Bridge Pattern — reference B&D Appendix A.3

35/40

Design patterns

Bridge Pattern — Example

,7,,7,,(7'7*/75 N
uses - Abstract class . >>
! __(in italics) f7>
y oo
uses Shape SurfacePattern
#pattern: Pattern has >
+ill() +HillPattern()
JA A
Client
Circle ZigZagPéttem Strip:ePattern
- X, Yy, radius
+ill() +illPattern() +illPattern()
&
Note: |means “extends” | means “implements”

36/40

Design patterns

Design Patterns encourage good Design Practice

o A facade pattern should be used by all subsystems in a software
system. The facade defines all the services of the subsystem.

o The facade will delegate requests to the appropriate
components within the subsystem.

o Adapters should be used to interface to any existing proprietary
components.

o For example, a smart card software system should provide an
adapter for a particular smart card reader and other hardware
that it controls and queries.

o Bridges should be used to interface to a set of objects where
the full set is not completely known at analysis or design time.

o Bridges should be used when the subsystem must be extended
later (extensibility).

37/40

Design patterns

Why are modifiable designs important?

o A modifiable design. ..
@ ...enables an iterative and incremental development cycle
o concurrent development
o risk management
o flexibility to change
@ ...minimizes the introduction of new problems when fixing old
ones
o ...enables ability to deliver more functionality after initial
delivery

38/40

Design patterns

What makes a design modifiable?

Low coupling and high coherence
Clear dependencies
Explicit assumptions
How do design patterns help?
They are generalized from existing systems
They provide a shared vocabulary to designers
They provide examples of modifiable designs
o Abstract classes
o Delegation

®© ©6 6 6 606 0 o

39/40

Design patterns

More Design Patterns!

o Structural pattern

o Facade, Adapter, Bridge

o Proxy — creates a stand-in for an object that is costly to access.
o Behavioral pattern

o Observer — coordinates several views of a single object.
o Creational Patterns

o Abstract Factory — initializes objects independently from the

client.

40/40

	Design process cont'd
	Design patterns

