
CITS4401 Software Requirements and Design
System Design Process

Lecturer: Arran Stewart

1 / 40



Design process cont’d

Design process cont’d

2 / 40



Design process cont’d

System design process

We’ve said previously that the design process helps us go from
a requirements model of our system, to implementation, in a
managed way.
It is a creative process concerned with how the system will be
implemented, and its activities include architecture design
(deciding on high-level structure and behaviour), interface
design and class design.
The design we end up with should describe the architecture or
structure of the system, its behaviour, and the classes and
algorithms needed to implement the system requirements.

3 / 40



Design process cont’d

System design process

In general, design is more “messy” a process than analysis.

Why is design difficult?

Analysis: Focuses on the application domain
Design: Focuses on the solution domain

Design knowledge is a moving target
The reasons for design decisions are changing very rapidly

4 / 40



Design process cont’d

System design process

Analysis depends on the problem domain.
When doing design, we add the implementation domain
(i.e. hardware, aspects of the language being used, the
computers being run on e3tc)
We worry about how to map the application domain into the
existing hardware.

5 / 40



Design process cont’d

System design process

If someone asks us, “What is the design of the system?” – it is the
decisions (hopefully documented) that we have made about:

what the subsystems are
how they are to be implemented (in hardware vs software,
using off-the-shelf components), etc
how data is managed
what the access control policy is
what the system assumes about external
systems/users/boundaries.

6 / 40



Design process cont’d

Design models

We can think of the design as consisting of a set of increasingly
refined/detailed design models of the system, that record the
decisions we have made.
Different parts of the design may be specified texctually, or
using graphical notations such as UML diagrams (class
diagrams, sequence diagrams, state charts, etc).
Program description languages or pseudocode may be
employed to define the algorithms and data structures used.

7 / 40



Design process cont’d

Design models

Many of the same tools we used in analysis, will be useful in design
– but now we are focused on constructing a solution to a problem
(not just modeling the problem).

By way of example:

We used class diagrams to represent analysis entities and the
relationship between them
We can use class diagrams again in our design; except now, we
aim to represent classes that we will actually implement. These
will likely be different from the classes we came up with in
analysis – additional classes are usually needed.

8 / 40



Design process cont’d

System design models

These design models describe the architecture or structure of
the system, its behaviour, and the classes and algorithms
required to implement the system requirements.

9 / 40



Design process cont’d

Making uses of our analysis

Nonfunctional requirements →
Design Goals Definition

Functional model →
System decomposition (Selection of subsystems based on
functional requirements, cohesion, and coupling)

Object model →
Hardware/software mapping
Persistent data management

Dynamic model →
Concurrency
Global resource handling
Software control

Subsystem Decomposition
Boundary conditions

10 / 40



Design process cont’d

Design patterns

One way we manage complexity in design is by looking for
opportunities to re-use design patterns – the next topic we look
at.

11 / 40



Design patterns

Design patterns

12 / 40



Design patterns

Outline

What are Design Patterns?
A design pattern describes a problem which occurs over and
over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use the
this solution a million times over, without ever doing it the
same twice

Design Patterns
Usefulness of design patterns
Design Pattern Categories

Patterns covered in this lecture
Facade: Unifying the interface to a subsystem.
Adapter: Interfacing to existing systems (legacy systems)
Bridge: Interfacing to existing and future systems

13 / 40



Design patterns

Why Use Design Patterns

Reuse: Once a design pattern has been verified, it can be used
in any number of ways in a given context.
Common Vocabulary: Design patterns give software designers a
common vocabulary that concisely encapsulates solutions to
design problems.
Easy to modify: Designs patterns are easy to modify to apply
to a particular problem. The solutions can also be modified to
give flexibility with minimal risk.

14 / 40



Design patterns

Elements of a Pattern

The Pattern Name encapsulates a well known solution to a
design problem, and increases our design vocabulary.
The Problem describes when to apply the pattern. It gives the
context of the pattern, and possibly some pre-conditions to
ensure the pattern will be effective.
The Solution describes the elements that make up the design,
their relationships, responsibilities, and collaborations. The
solution is a template, that can be modified to apply to range
of situations.
The Consequences are the results and trade-offs of applying the
pattern. These are critical for evaluating the costs and benefits
of applying a pattern.
[Gamma et al 95]

15 / 40



Design patterns

Reuse

Main goal:
Reuse knowledge from previous experience to current problem
Reuse functionality which is already available

Composition (also called Black Box Reuse)
New functionality is obtained by aggregation
The new object with more functionality is an aggregation of
existing components

Inheritance (also called White-Box Reuse)
New functionality is obtained by inheritance.

Three ways to get new functionality:
Implementation inheritance
Interface inheritance
Delegation

16 / 40



Design patterns

Implementation Inheritance vs Interface Inheritance

Implementation inheritance
Also called class inheritance
Goal: Extend an applications’ functionality by reusing
functionality in parent class
Inherit from an existing class with some or all operations already
implemented

Interface inheritance
Also called subtyping
Inherit from an abstract class with all operations specified, but
not yet implemented

17 / 40



Design patterns

Implementation Inheritance

A very similar class is already implemented that does almost the
same as the desired class implementation.

Problem with implementation inheritance:

Some of the inherited operations might exhibit unwanted behavior. What happens if 

the Stack user calls Remove() instead of Pop()? 

Example: I have a List class, I 

need a Stack class. How about 

sub-classing the Stack class 

from the List class and providing 

three methods, Push() and 

Pop(), Top()?

Add ()
Remove()

List

Push ()
Pop()

Stack

Top()

“Already

implemented”

18 / 40



Design patterns

Delegation

Delegation is a way of making composition (for example
aggregation) as powerful for reuse as inheritance
In Delegation two objects are involved in handling a request

A receiving object delegates operations to its delegate.
The developer can make sure that the receiving object does not
allow the client to misuse the delegate object

19 / 40



Design patterns

Delegation or Inheritance?

Delegation
Pro:

Flexibility: Any object can be replaced at run time by another
one (as long as it has the same type)

Con:
Inefficiency: Objects are encapsulated.

Inheritance
Pro:

Straightforward to use
Supported by many programming languages
Easy to implement new functionality

Con:
Inheritance exposes the details of a parent class to its subclasses
Any change in the parent class implementation forces the
subclass to change (which requires recompilation of both)

20 / 40



Design patterns

Delegation instead of Inheritance

Delegation: Catching an operation and sending it to another object.

+Add()
+Remove()

List

Stack

+Push()

+Pop()

+Top()

Stack

Add()
Remove()

List

+Push()

+Pop()

+Top()

21 / 40



Design patterns

Towards a Pattern Taxonomy

Structural Patterns
Adapters, Bridges, Façades and Proxies are variations on a
single theme:

They reduce the coupling between two or more classes
They introduce an abstract class to enable future extensions
Encapsulate complex structures

Behavioural Patterns
Concerned with algorithms and the assignment of
responsibilities between objects: Who does what?
Characterize complex control flow that is difficult to follow at
runtime.

Creational Patterns
Abstract the instantiation process.
Make a system independent from the way its objects are
created, composed and represented.

22 / 40



Design patterns

Structural patterns: Façade, Adapter, Bridge

A subsystem consists of
an interface object
a set of application domain objects (entity objects) modeling
real entities or existing systems

Some of the application domain objects are interfaces to
existing systems

one or more control objects
Realization of Interface Object: Facade

Provides the interface to the subsystem
Interface to existing systems: Adapter or Bridge

Provides the interface to existing system (legacy system)
The existing system is not necessarily object-oriented!

23 / 40



Design patterns

Facade Pattern

Provides a unified interface to a set of objects in a subsystem.
A facade defines a higher-level interface that makes the
subsystem easier to use (i.e. it abstracts out the gory details)
Facades allow us to provide a closed architecture

24 / 40



Design patterns

Open vs Closed Architecture

Open architecture:
Any client can see into the vehicle subsystem and call on any
component or class operation at will.

Why is this good?
Efficiency

Why is this bad?
Can’t expect the caller to understand how the subsystem works
or the complex relationships within the subsystem.
We can be assured that the subsystem will be misused, leading
to non-portable code

25 / 40



Design patterns

Open vs Closed Architecture

Vehicle Subsystem

VIP Subsystem

AIM

Card

SA/RT

Seat

26 / 40



Design patterns

Realizing a Closed Architecture with a Facade

The subsystem decides exactly how it is accessed.
No need to worry about misuse by callers
The subsystem components can still be accessed directly.
If a façade is used the subsystem can be used in an early integration
test

We need to write only a driver

27 / 40



Design patterns

Realizing a Closed Architecture with a Facade

VIP Subsystem

AIM

Card

SA/RT

Seat

Vehicle Subsystem API

28 / 40



Design patterns

Adapter Pattern

Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces
Used to provide a new interface to existing legacy components
(Interface engineering, reengineering).
Also known as a wrapper
Two adapter patterns:

Class adapter:
Uses multiple inheritance to adapt one interface to another

Object adapter:
Uses single inheritance and delegation

We will mostly use object adapters and call them simply
adapters

29 / 40



Design patterns

Adapter pattern

Delegation is used to bind an Adapter and an Adaptee
Interface inheritance is use to specify the interface of the
Adapter class.
Target and Adaptee (usually called legacy system) pre-exist the
Adapter.

Client
Target

Request()

Adaptee

ExistingRequest()

Adapter

Request()

adaptee

30 / 40



Design patterns

Adapter pattern example

public class ServicesEnumeration implements Enumeration {
private RegisteredServices adaptee;
public boolean hasMoreElements() {
return this.currentServiceIdx <= adaptee.numServices();

}
public Object nextElement() {
if (!this.hasMoreElements()) {
throw new NoSuchElementException();
}
return adaptee.getService(this.currentSerrviceIdx++);

}
//...

31 / 40



Design patterns

Adapter pattern example

Client

Enumeration

hasMoreElements()

nextElement()

RegisteredServices
numServices();

getService(int num);

ServicesEnumeration
hasMoreElements()

nextElement()

adaptee

32 / 40



Design patterns

Adapter pattern example

TextDrawingToolkit

someMethod()

Shape

draw()

TextShape

draw()

Triangle

draw()

Circle

draw()

DrawingEditor
*

(Client)

(Target)

(Adaptee)

(Adapter)

The draw() method

of TextShape calls

someMethod() to

do the drawing

33 / 40



Design patterns

Adapter vs Bridge

Similarities:
Both used to hide the details of the underlying implementation.

Difference:
The adapter pattern is geared towards making unrelated
components work together

Applied to systems after they’re designed (reengineering,
interface engineering).

A bridge, on the other hand, is used up-front in a design to let
abstractions and implementations vary independently.

Green field engineering of an “extensible system”
New “beasts” can be added to the “object zoo”, even if these
are not known at analysis or system design time.

34 / 40



Design patterns

Bridge Pattern

Bridge Pattern – reference B&D Appendix A.3

Client

Abstraction Implementor

Refined Abstraction Concrete 

Implementor

A

Concrete 

Implementor

B

imp

35 / 40



Design patterns

Bridge Pattern – Example

Shape

#pattern: Pattern

+fill()

Circle

- x, y, radius

+fill()

SurfacePattern

+fillPattern()

ZigZagPattern

+fillPattern()

StripePattern

+fillPattern()

has

Client

uses

uses

means “extends” means “implements”Note:

Abstract class 
(in italics)

36 / 40



Design patterns

Design Patterns encourage good Design Practice

A facade pattern should be used by all subsystems in a software
system. The façade defines all the services of the subsystem.

The facade will delegate requests to the appropriate
components within the subsystem.

Adapters should be used to interface to any existing proprietary
components.

For example, a smart card software system should provide an
adapter for a particular smart card reader and other hardware
that it controls and queries.

Bridges should be used to interface to a set of objects where
the full set is not completely known at analysis or design time.

Bridges should be used when the subsystem must be extended
later (extensibility).

37 / 40



Design patterns

Why are modifiable designs important?

A modifiable design. . .
. . . enables an iterative and incremental development cycle

concurrent development
risk management
flexibility to change

. . . minimizes the introduction of new problems when fixing old
ones
. . . enables ability to deliver more functionality after initial
delivery

38 / 40



Design patterns

What makes a design modifiable?

Low coupling and high coherence
Clear dependencies
Explicit assumptions
How do design patterns help?
They are generalized from existing systems
They provide a shared vocabulary to designers
They provide examples of modifiable designs

Abstract classes
Delegation

39 / 40



Design patterns

More Design Patterns!

Structural pattern
Façade, Adapter, Bridge
Proxy – creates a stand-in for an object that is costly to access.

Behavioral pattern
Observer – coordinates several views of a single object.

Creational Patterns
Abstract Factory – initializes objects independently from the
client.

40 / 40


	Design process cont'd
	Design patterns

