
CITS4401 Software Requirements and Design
Introduction to System Design

Lecturer: Arran Stewart

1 / 28



System Design

The purpose of system design:

Bridging the gap between desired and existing system in a
manageable way

Use Divide and Conquer
We model the new system to be developed as a set of
subsystems

2 / 28



System Design is

a creative process
no cook book solutions

goal driven
we create a design for solving some problem

constraint driven
by the function to be served and the constructions which are
possible

good designs can be recognised
simple, coherent, adequately meets requirements, adaptable

3 / 28



System Design

. . . transforms the analysis model by
defining the design goals of the project
decomposing the system into smaller subsystems
selection of off-the-shelf and legacy components
mapping subsystems to hardware
selection of persistent data management infrastructure
selection of access control policy
selection of global control flow mechanism
handling of boundary conditions

4 / 28



System Design Activity Diagram

Describe boundary
conditions

Define Define
subsystems

Map subsystems
to hardware/

Manage

Select a

Define access

design goals

persistent data

control policies

global 

Implement
subsystems

software platform

control flow

5 / 28



Concerns

Any complex problem can be more easily handled if it is
subdivided into pieces that can each be solved and/or
optimized independently
A concern is a feature or behavior that is specified as part of
the requirements model for the software
By separating concerns into smaller, and therefore more
manageable pieces, a problem takes less effort and time to
solve.

6 / 28



Modularity

“modularity is the single attribute of software that allows a
program to be intellectually manageable” [Mye78].

Monolithic software (i.e., a large program composed of a single
module) cannot be easily grasped by a software engineer.

The number of control paths, span of reference, number of
variables, and overall complexity would make understanding
close to impossible.
In almost all instances, you should break the design into many
modules, hoping to make understanding easier and as a
consequence, reduce the cost required to build the software.

7 / 28



Example of system decomposition
A robotic system for packing in a factory:

8 / 28



Showing decomposition diagramatically

Useful for stakeholder communication

May be used as a focus of discussion by system stakeholders.

9 / 28



Showing decomposition diagramatically

How to do this?

Simple, informal block diagrams showing entities and
relationships are the most frequently used method for
documenting decomposition
But these have been criticised because they lack semantics, do
not show the types of relationships between entities nor the
visible properties of entities in the architecture.

10 / 28



Showing decomposition diagramatically

Sometimes referred to as “box and line diagrams”

Very abstract - they do not show the nature of component
relationships nor the externally visible properties of the
sub-systems.
However, useful for communication with stakeholders and for
project planning.

11 / 28



Information Hiding

Information hiding is the idea that every module should hide
aspects of its implementation - exposing only an undestandable
interface

Why do this?
reduces the likelihood of “side effects”
limits the global impact of local design decisions
emphasizes communication through controlled interfaces
discourages the use of global data
leads to encapsulation—an attribute of high quality design
results in higher quality software

12 / 28



Identifying Subsystems

Identifying Subsystems

13 / 28



Identifying Subsystems

Class diagrams in System Design

A first step in system design is to break down the solution
domain into simpler parts.
A subsystem is a collection of classes, associations, operations,
events and constraints that are inter-related
Identifying subsystems usually involves backtracking, evaluation
and revision of various solutions
It is important to get the decomposition right

subsystems implemented by different teams
bad decomposition can lead to unworkable designs

14 / 28



Identifying Subsystems

Heuristics to Identify Subsystems

Consider the objects and classes in your requirements analysis
models.
Try grouping objects into subsystems by

assigning objects in one use case into the same subsystem
create a dedicated subsystem for objects used for moving data
among subsystems
minimizing the number of associations crossing subsystem
boundaries
ensure all objects in the same subsystem are functionally related

15 / 28



Identifying Subsystems

Some further criteria

Primary Question: what kind of service is provided by the
subsystems?
Secondary Question: Can the subsystems be hierarchically
ordered (layers)?
Criteria for selecting subsystems: most of the interaction
should be within a subsystem and not across subsystem
boundaries (we’ll return to this idea)

16 / 28



Identifying Subsystems

Modular design

A design is modular when
each activity of the system is performed by exactly one
component
inputs and outputs of each component are well-defined, in that
every input and output is necessary for the function of that
component
the idea is to minimise the impact of later changes by
abstracting from implementation details

17 / 28



Identifying Subsystems

Coupling and cohesion

Goal: Reduction of complexity while change occurs
Cohesion measures the dependence among classes

High cohesion: The classes in the subsystem perform similar
tasks and are related to each other (via associations)
Low cohesion: Lots of miscellaneous and auxiliary classes, no
associations

Coupling measures dependencies between subsystems
High coupling: Changes to one subsystem will have high impact
on the other subsystem (change of model, massive
recompilation, etc.)
Low coupling: A change in one subsystem does not affect any
other subsystem

Subsystems should have as maximum cohesion and minimum
coupling as possible:

How can we achieve high cohesion?
How can we achieve loose coupling?

18 / 28



Identifying Subsystems

Coupling

Coupling is the strength of dependencies BETWEEN two
subsystems
In general, the fewer dependencies between subsystems the
better it is
Why are fewer dependencies better ?
Example:

3 subsystems have high coupling with 3rd party database
subsystem.
If database is changed then all 3 subsystems need to be modified
What if an extra subsystem is created to handle interface with
database ?

By reducing coupling, developers can introduce many
unnecessary layers of abstraction that consume development
time and processing time

19 / 28



Identifying Subsystems

Coupling levels

Uncoupled -
no dependencies

Highly coupled -
many dependencies

Loosely coupled -
some dependencies

20 / 28



Identifying Subsystems

Coupling levels (2)

Low coupling
(good)

High coupling
(bad)

LOOSE

Content coupling: when one module
modifies or relies on the internal
workings of another module
Common coupling: when two modules
share the same global data
Control coupling: when one module
controlling the logic of another, by
passing its information on what to do
Stamp coupling: when modules share a
composite data structure and use only a
part of it
Data coupling: when modules share data
through parameters
Uncoupled: when nothing is shared

21 / 28



Identifying Subsystems

Coherence / Cohesion

Coherence (or cohesion) is the strength of dependencies
WITHIN a subsystem
In general, the stronger the dependencies within a subsystem
the better it is
Strong coherence is best, middle level is better but low
coherence must be avoided

22 / 28



Identifying Subsystems

Cohesion levels

Low coherence
(bad)

High coherence
(good) Functional cohesion (best): when parts of a module all

contribute to a single well-defined task of the module
Sequential cohesion: when parts of a module are grouped
because the output from one part is the input to another
part
Communicational cohesion: when parts of a module
operate on the same data
Procedural cohesion: when parts of a module always
follow a certain sequence of execution
Temporal cohesion: when parts of a module are grouped
when they are processed
Logical cohesion: when parts of a module are grouped
because they logically do “the same thing” in some way
Coincidental cohesion (worst) : when parts of a module
are grouped arbitrarily (at random).

23 / 28



Identifying Subsystems

Partitions and layering

Partitioning and layering are techniques to achieve low
coupling.
A large system is usually decomposed into subsystems using
both, layers and partitions.

Partitions divide a system into several independent (or
weakly-coupled) subsystems that provide services on the same
level of abstraction – i.e. they are on the same “layer”
A layer is a subsystem that provides subsystem services to a
higher layers (level of abstraction)

A layer can only depend on lower layers
A layer has no knowledge of higher layers

24 / 28



Identifying Subsystems

Partitions and layering

25 / 28



Identifying Subsystems

Partitions and layering

Layer relationship
Layer A “Calls” Layer B (runtime)
Layer A “Depends on” Layer B (“make” dependency, compile
time)

Partition relationship
The subsystems have mutual but not deep knowledge about
each other
Partition A “Calls” partition B and partition B “Calls” partition
A

26 / 28



Identifying Subsystems

How does layering help?

Supports incremental development of sub-systems in different
layers.
When a layer interface changes, (potentially) only the adjacent
layer is affected.

27 / 28



Identifying Subsystems

Design Summary (so far)

Requirements analysis focuses on the problem domain.
Design focuses on the solution domain.
In system design, objects identified during analysis are grouped
into subsystems
The degree of cohesion within and coupling between
subsystems can be used to guide subsystem decomposition

28 / 28


	Identifying Subsystems

