
©Terry Woodings, 1992, 2003 SQM 400 Unit Guide Page 1 of 6

The University of W.A.

School of Computer Science & Software Engineering

First Semester 2003

Software Quality and Measurement
670.400

26 lectures & 12 tutorial/workshops by

Terry Woodings
Senior Teaching Fellow

Room 4.18 9380 2618

terry@ee.uwa.edu.au

©Terry Woodings, 1992, 2003 SQM 400 Unit Guide Page 2 of 6

Introduction

This course will look at the application of the theory of software engineering to
industry. Commercial systems are generally the work of teams of specialists and
are of sufficient scale that it is not realistically possible for a single person to
comprehend all their inherent complexity. The course considers software
development and maintenance as a process which can be defined, measured,
modelled and optimised. In particular, it will consider the assessment of quality,
reliability and usability. There will be some discussion of safety critical issues as
well as standard techniques for the production of systems for the private or public
sector.

Course Outcomes:

At the conclusion of the course, students should understand software development
as an industrial-strength process: its management, planning, control, measurement
and improvement, as well as specific issues such as estimation, planning and
quality assurance. Students should develop skills in VV&T (validation,
verification and testing), the use of ISO standards, user contact, configuration
management, the design and use of metrics, reliability modelling and risk
management. Students will gain an awareness of the human and professional
issues (such as privacy), regarding the impact of new systems on organisations and
society at large. SQM400 is NOT a programming unit. It indicates that
programming is only one aspect of software engineering.

Prerequisites:

This course is built on (and replaces) Software Quality and Reliability 407 (taught
up to 2002). Students need to have a strong knowledge of programming theory
and practice, such as that indicated by completing Software Requirements and
Project Management 300 or equivalent.

Course style

There will be two lectures and a tutorial/workshop per week with lab classes as
needed for particular exercises. The class is small enough to be able to run lectures
in a fairly interactive mode. This course is neither a programming unit nor about
learning specific tools - it is concerned with software development techniques and
the underlying theories and concepts. Students are expected to do some reading of
the text (Pressman or Sommerville) and of supplementary material each week.

©Terry Woodings, 1992, 2003 SQM 400 Unit Guide Page 3 of 6

Timetable

Two lectures per week at 10.00 and 11.00 on Wednesdays in the Ross LT.
There will also be a Tutorial/workshop at a time to be arranged at the first lecture.
Attendance at the workshop is essential to cover all the practical elements of the
course.

Text books

Roger Pressman: "Software Engineering - A Practitioner's Approach", 5th edition
(European Adaptation), McGraw Hill, 2000. The 4th edition (1997) is also
acceptable.

An excellent (optional) alternative and source of supplementary material is:
Ian Sommerville: "Software Engineering", 6th edition, Addison Wesley, 2001.
The 5th edition (1995) is also acceptable.

Each student will also need to obtain a copy of HB90.9-2000 "Software
Development - Guide to ISO 9001:2000" - available online from the University of
WA library

Syllabus

Week Lecture topics
1 The concept of a software process and quality principles
2 Basic techniques for assuring software systems
3 Estimation (planning and control depend on estimation skills)
4 Standards and procedures
5 Validation of requirements
6 Verification and testing as a controlled process
7 Configuration management and change control
8 Data integrity and measurement theory
9 Measurement and testing of usability
10 Measurement and certification of software products
11 Measurement of the software process
12 Human factors – the client, the manager, the software team
13 Assessment of an organisation’s capability and strategic management

©Terry Woodings, 1992, 2003 SQM 400 Unit Guide Page 4 of 6

Assessment

There are two specific assignments. The first, worth 25%, is a group project on
estimation, designed to demonstrate skills in development scheduling and
measurement for project control. The second, worth 20% and in two parts, assesses
documenting procedures together with designing and implementing software
quality metrics.

As most of the students will be employed as professional software engineers at the end
of the year, the standard of presentation of assignments and projects will be at a level
suitable for putting before a Managing Director. Also, in industry, there is usually a
preference for an adequate job done early than a perfect job done late. Accordingly,
projects may be marked on a sliding scale allowing extra marks for early submissions.
That is, there will be a small adjustment of marks (up to 1% per day) for early or (down
by 5% per day) for late submission of projects. The marking algorithm will be discussed
in class and will be clearly indicated on relevant project sheets.

Students are expected to maintain a Practical Work Folder in which they will keep
notes of all tutorial work and a log of software engineering papers read. This
Folder will be audited twice during the semester and is worth 5% of the final mark.

There will be a three hour (open book) exam at the end of the semester worth the
other 50% of the final mark. Items permitted in the exam room will be a file of
lecture notes, up to three text books, assignments and the Practical Work Folder.

To pass this course a student is expected to achieve a satisfactory performance in
both the Continuous (Assignments + Practice folder) and Examination components
of the course.

Practical Work Folder

As with other professionals, engineers are expected to maintain a casebook or
Practical Work Folder containing:
 • notes of all practical/tutorial work; • a log of research papers read.
This Folder should be available for inspection at the tutorial and will be audited
during the semester. It should be handed in for assessment at the end of the course
and is worth 5% of the final mark.

©Terry Woodings, 1992, 2003 SQM 400 Unit Guide Page 5 of 6

1. Practical Work. Each week, students will be doing some practical work
associated with the topics of the course, normally in preparation for the tutorial.
They should record what they did, discussions, answers to questions etc., from
each week's tutorial in their Practical Work Folder. Students will also have a few
exercises to complete at non-timetabled times. Worksheets will be provided for
these exercises and students are expected to formally write-up their
results/experiences/conclusions.

2. Reading Log. It is important that students develop the habit of maintaining a
current knowledge of their areas of expertise. Each student is required to give
some time to browsing in the library and reading at least one journal article or new
book chapter (on some aspect of software engineering of the student's choosing)
per week. Evidence of this will be by means of a reading log. Information in the
log should include author, article title, journal or book title, date published, date
read, a note on the author's theme or thesis and the student's evaluation of the item
with regard to its relevance in the context of software engineering. The reading log
should be maintained as a word-processed document with a printed version of each
entry on a fresh page. The twelve pages may not include chapters of the text book
or articles from trade magazines.

As a result of the readings, at the end of the semester, each student will append to
the reading log a two page appreciation of the state of the art in the topic chosen.
This will indicate the current state of knowledge, what is within the capability of
software engineers and what is at present infeasible. It should list a number of
currently open research questions.

Some (40) useful authors are: Vic Basili, Barry Boehm, Lionel Briand, Fred
Brooks, Michael Cusumano, Tom DeMarco, Edsger Dijkstra, Khaled El-Emam,
Michael Fagan, Richard Fairley, Norman Fenton, Dan Freedman, Tom Gilb,
Robert Glass, Robert Grady, Maurice Halstead, Bill Hetzel, Tony Hoare, Watts
Humphrey, Darrel Ince, Ross Jeffery, Capers Jones, Barbara Kitchenham, Nancy
Leveson, Michael Lyu, Harlan Mills, John Musa, Jakob Nielsen, David Parnas,
Shari Pfleeger, Walker Royce, Norman Schneidewind, Gordon Schulmeyer,
Martin Sheppard, Ben Shneiderman, Rob Thomsett, Gerald Weinberg, Niklaus
Wirth, Ed Yourdon, Horst Zuse.

For sets of major original papers, students could check the tutorial collections
produced by Richard Thayer (editor), such as: "Software Engineering Project
Management" published by the IEEE in 1990 and 1997.

©Terry Woodings, 1992, 2003 SQM 400 Unit Guide Page 6 of 6

Plagiarism and Collusion

Group activities are an effective form of learning and are encouraged. Several of
the assignments and some tutorial work - where indicated on project assignment
sheets - may be done as a group. Always give credit to other peoples' work that
has been included in any assignment. Plagiarism, cheating and unauthorised
collusion are regarded seriously and the student's attention is drawn to the
University's policies on these issues.

End of document

