
Artificial Intelligence

Topic 12

Logical Inference

Reading: Russell and Norvig, Chapter 7, Section 5

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 41

Outline

♦ Inference systems

♦ Soundness and Completeness

♦ Proof methods
– normal forms
– forward chaining
– backward chaining
– resolution

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 42

From Entailment to Inference

•We have answered what it means to say α follows from from a knowledge
base KB:

– KB |= α

•We have seen that this can be determined semantically by model checking
or by truth table enumeration

– 2n models or rows for n symbols

• Is there a better way?

– can we do it from syntax alone?

– can we automate it?

– can we even turn it into a programming language?

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 43

Inference Systems

Inference system - set of rules for deriving new sentences from existing ones

• AKA Proof System, Derivation System, Theorem-Proving System

• rules operate directly on syntax

Example:

P1 = Socrates is a man
P2 = Socrates is mortal
P1 ⇒ P2 (If Socrates is a man, then Socrates is mortal)

Assume KB = {P1, P1 ⇒ P2}.

We know KB |= P2. (check)

What about inference rules?

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 44

Inference Systems

Modus Ponens

α α ⇒ β

β

pattern matching — from sentences that match α and α ⇒ β, generate a
new sentence that matches β

More examples. . .

And Elimination

α ∧ β
α

Or Introduction

α

?

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 45

Inference Systems

Modus Tolens

¬β α ⇒ β

¬α
An inference system may contain one or more inference rules.

Notation:

KB ` α = sentence α can be derived from KB using the rules of the
inference system

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 46

Soundness and Completeness

In fact we could make up any inference rule we like. How about:

And Introduction

α

α ∧ β?

Why wouldn’t we want this rule in our inference system?

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 47

Soundness and Completeness

We only want rules that “correspond” to logical consequences. Formally. . .

Soundness: an inference system is sound if
whenever KB ` α, it is also true that KB |= α

That is, it only allows you to generate logical consequences.

Completeness: an inference system is complete if
whenever KB |= α, it is also true that KB ` α

That is, it allows you to generate all logical consequences.

(Which do you think is worse, sound but not complete, or complete but not
sound?)

Ideally we would like to use an inference system that is both sound and
complete.

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 48

Review of Progress

Recall our logical agent:

Inference engine

Knowledge base domain−specific content

domain−independent algorithms

• Knowledge base = set of sentences in a formal language 4

• Tell it what it needs to know 4

(KB ← KB ∪ {α})
•Ask — answers should follow from the KB 4?

(KB ` α)

A sound and complete inference system means that if α follows from KB
then there is a sequence of rule applications that allow you to generate α
starting with KB — but it doesn’t tell you how to get there!

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 49

Proof Methods

Consequences of KB are a haystack; α is a needle.
Entailment = needle in haystack; inference = finding it

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 50

Proof Methods

Application of inference rules
– Legitimate (sound) generation of new sentences from old
– Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.
– Typically require translation of sentences into a normal form

Examples

• forward and backward chaining (Horn form)

• resolution (conjunctive normal form)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 51

Horn Form

Horn Form (restricted)
KB = conjunction of Horn clauses

Horn clause =
♦ proposition symbol or
♦ (conjunction of symbols ⇒ symbol)

E.g., C ∧ (B ⇒ A) ∧ (C ∧D ⇒ B)

Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time.

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 52

Forward chaining

Idea: systematically iterate through knowledge base,
fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

Q

P

M

L

BA

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 53

Forward chaining example

Q

P

M

L

BA

2 2

2

2

1

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 54

Forward chaining example

Q

P

M

L

B

2

1

A

1 1

2

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 55

Forward chaining example

Q

P

M

2

1

A

1

B

0

1
L

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 56

Forward chaining example

Q

P

M

1

A

1

B

0

L
0

1

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 57

Forward chaining example

Q

1

A

1

B

0

L
0

M

0

P

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 58

Forward chaining example

Q

A B

0

L
0

M

0

P

0

0

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 59

Forward chaining example

Q

A B

0

L
0

M

0

P

0

0

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 60

Forward chaining example

A B

0

L
0

M

0

P

0

0

Q

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 61

Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 62

Backward chaining example

Q

P

M

L

A B

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 63

Backward chaining example

P

M

L

A

Q

B

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 64

Backward chaining example

M

L

A

Q

P

B

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 65

Backward chaining example

M

A

Q

P

L

B

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 66

Backward chaining example

M

L

A

Q

P

B

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 67

Backward chaining example

M

A

Q

P

L

B

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 68

Backward chaining example

M

A

Q

P

L

B

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 69

Backward chaining example

A

Q

P

L

B

M

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 70

Backward chaining example

A

Q

P

L

B

M

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 71

Backward chaining example

A

Q

P

L

B

M

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 72

Backward chaining example

A

Q

P

L

B

M

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 73

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing,
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,
e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 74

Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals︸ ︷︷ ︸

clauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Resolution inference rule (for CNF): complete for propositional logic

`1 ∨ · · · ∨ `k, m1 ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where `i and mj are complementary literals. E.g.,

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete for propositional logic

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 75

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α⇔ β with (α ⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨B1,1) ∧ (¬P2,1 ∨B1,1)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 76

Resolution algorithm

“Proof by contradiction”

Based on the fact that KB |= α iff KB ∪ {¬α} is unsatisfiable (prove!)

Unsatisfiability in CNF is indicated by the empty clause

We repeatedly apply the resolution rule to ¬α and its consequences until we
derive the empty clause.

Exercise: What is the complexity of the conversion to CNF?
What is the complexity of the resolution algorithm?

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 77

Resolution example

KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1 α = ¬P1,2

P1,2

P1,2

P2,1

P1,2 B1,1

B1,1 P2,1 B1,1 P1,2 P2,1 P2,1
P1,2B1,1 B1,1

P1,2B1,1 P2,1B1,1P2,1 B1,1

P1,2 P2,1 P1,2

Resolution combined with first-order logic is the key mechanism used in logic
programming (eg PROLOG).

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 78

Efficient Reasoning Algorithms

The satisfiability problem for propositional logic in both infeasible (NP-
complete) and very useful (TSP, CSP, planning, etc).

So if an agent is required to perform propositional reasoning, what kind of
efficient mechanisms are available?

We will look at two possible algorithms: ♦ The Davis-Putnam algorithm is
a recursive DFS for satisfying models of a formula, aided by some heuristics;
and ♦ WALKSAT is a randomized algorithm that performs a local search
for a satisfying model.

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 79

The DPLL Algorithm (1962)

DPLL is a variation fo the Davis-Putnam algorithm. It takes the input as a
senetnce in CNF, and iterates through potential models using the following
heuristics:

• Early Termination The algorithm recognizes if a clause is true (one of
its literals is true) or if a sentence of false (one of its clauses is false) and
therefore does not need to search redundant branches of the search tree.

• Pure Symbols A pure symbol is a symbol that has the same sign in all
(active) clauses. These symbls can be ignored.

• Unit Clause A unit clause is a clause with just one (active) literal. A
unit clause dictates the value of that literal in all the other clauses.

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 80

function DPLL-Satisfiable?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s

symbols← a list of the proposition symbols in s
return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value←Find-Pure-Symbol(symbols, clauses, model)

if P is non-null then return DPLL(clauses, symbols–P,

[P = value|model])

P, value←Find-Unit-Clause(clauses, model)
if P is non-null then return DPLL(clauses, symbols–P,

[P = value|model])

P←First(symbols); rest←Rest(symbols)

return DPLL(clauses, rest, [P = true|model]) or DPLL(clauses, rest,

[P = false|model])

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 81

The WALKSAT algorithm

The WALKSAT algorithm simply performs a random walk over all models
hoping to find a model that satisfies a sentence in CNF.

For each step of the walk it flips the value of a symbol (proposition) and
tests if the sentence becomes true.

The algorithm nondeterministically chooses either a randomly selected propo-
sition to flip, or chooses the proposition that maximizes the number of sat-
isfied clauses.

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 82

The WALKSAT algorithm

function WalkSAT(clauses, p, max-flips) returns a satisfying model or

failure
inputs: clauses, a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically

around 0.5

max-flips, number of flips allowed before giving up

model← a random assignment of true/false to the symbols in clauses
for i = 1 to max-flips do

if model satisfies clauses then return model
clause← a randomly selected clause from clauses that is false in model

with probability p flip the value in model of a randomly selected symbol

from clause
else flip whichever symbol in clause maximizes the number of satisfied

clauses

return failure

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 83

More Logics

Although propositional logic is computationally attractive, it lacks expressive
power in practice.

eg. How would you say “All men are mortal” or “All squares adjacent to a
pit have a breeze”?

There are many other logics that extend propositional logic, eg:

• first-order logic introduces objects, functions, relations, variables, quanti-
fiers (for all, there exists)

• higher order logics allow the logic to refer to its own constructs

• temporal logics introduce specific structures to represent time steps

• modal logics introduce possibility and necessity

• probabilistic logics introduce the probability a statement is true

• fuzzy logics introduce a degree of membership to a class

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 84

Summary

Logical agents apply inference to a knowledge base
to derive new information and make decisions

Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundess: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Resolution is the basis of the Prolog programming language
Uses first-order logic — more expressive power

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical Inference Slide 85

