
CITS2200
Data Structures and Algorithms

Cara MacNish

School of Computer Science & Software Engineering

University of Western Australia

Topic 1

Introduction

• Why study data structures?

• Collections, abstract data types (ADTs), and algorithm
analysis

• More on ADTs

• What’s ahead?

Reading: Lambert & Osborne, Secs. 1.1–1.6

1.1 Why are we here?

100 students, 2 hours of lectures, 3 hours of labs/pracs,. . .

• 500 person hours

• 62 person days

• > 1
4

person year each week!

• clarity

• correctness

• efficiency

• maintainability

• reusability

Why?

• software is complex

— more than any other man made system

— even more so in today’s highly interconnected world

• software is fragile

— smallest logical error can cause entire systems to
crash

• neither you, nor your software, will work in a vacuum

• the world is unpredictable

— eg. torpedo’s self-destruct mechanism

• clients are unpredictable!

1.2 What will we study?

1.2.1 Collections

. . . as name suggests, hold a bunch of things. . .

“nearly every nontrivial piece of software involves the use of
collections”

Seen arrays — others include queues, stacks, lists, trees,
maps, sets, tables. . .

Why so many?

Space efficiency

Time efficiency:

• store (add to collection)

• search (find an object)

• retrieve (read information)

• remove or replace

• clone (make a copy)

1.2.2 Abstract Data Types

Allow user to abstract away from implementation detail

Example: Microwave Oven

• cook for 3 mins vs • turn on light

• begin rotating plate

• start timer

• nuke everything
. . .

Some have a higher level of abstraction
— eg. “cook white rice”

Example: Picture Framing

Need to cut many pieces of wood at 45 degree angles

Program 1

1. measure the distance of the mark where the cut is

needed from the end of the piece of wood

2. measure the same distance on the other side of the

wood

3. measure the distance between the two marks

4. add the same distance to the mark on the other side

5. draw a 45 degree line between the marks

6. align a guide block with the line

7. cut against the guide block

Alternative solution. . .

Mitre Saw

Implementation:

eg. wooden box pre-cut with common angles, and saw

⇒ “knows” how to cut commonly used angles

Operations:

1. cut at 90 degrees

2. cut at 45 degrees
...

Program 2

1. place wood in box aligning mark with 45 degree angle

2. cut wood

We want to build and use “mitre saws” for our collections

— details of implementation abstracted away from user

We call these abstract data types (ADTs)

1.2.3 Algorithm Analysis

We will consider a number of alternative implementations for
each ADT.

Which is best?

Simplicity and Clarity

All things being equal we prefer simplicity, but they rarely
are. . .

Space Efficiency

• space occupied by data — overheads

• space required by algorithm (eg recursion)

— can it blow out?

Time Efficiency

Time performance of algorithms can vary greatly.

Example: Finding a word in the dictionary

Algorithm 1:

• Look through each word in turn until you find a match.

Algorithm 2:

• go to half way point

• compare your word with the word found

• if < repeat on earlier half

else > repeat on later half

Performance

Algorithm 1 (exhaustive search) proportional to n/2

Algorithm 2 (binary search) proportional to log n

number of Algorithm 1 Algorithm 2

words max. comparisons max. comparisons

10 10 4

100 100 7

1000 1000 10

10000 10000 14

100000 100000 17

1000000 1000000 20

1.3 More on ADTs

1.3.1 History

The evolution of programming · · ·!

machine code

↓
assembler

↓
high-level languages (basic, fortran, . . .)

↙ ↘
declarative programming procedural programming

(logic, functional, . . .) (pascal, C, . . .)

↓
object-oriented programming

↓
component-oriented programming . . . ?

agent-oriented programming . . . ?

↓ abstraction away from machine “nuts and bolts” — towards humans?

Object-oriented programming was originally based around
the concept of abstract data types

— for a good introduction see the Eiffel book:

Object-Oriented Software Construction, by Bertrand Meyer

(a.k.a. the “OO bible”)

1.3.2 ADTs and Java

Java classes are ideal for implementing ADTs.

ADTs require:

• Some references (variables) for holding the data

(usually hidden from the user)

• Some operations that can be performed on the data

(available to the user)

A class in Java has the general structure. . .

class declaration

variable declarations // data held

.

.

method declarations // operations on the data

.

.

1.3.3 Information Hiding

• Variables can be made private

— no access by users

• Methods can be made public

— used to create and manipulate data structure

This encapsulation is good programming practice

— can change

• the way the data is stored

• the way the methods are implemented

without changing the (external) functionality.

Example: A Matrix Class

public class Matrix {

private int[][] matrixArray;

public Matrix (int rows, int columns) {

matrixArray = new int[rows][columns];

for (int i=0; i<rows; i++)

for (int j=0; j<columns; j++)

matrixArray[i][j] = 0;

}

public void set (int i, int j, int value) {

matrixArray[i][j]=value;

}

public int get (int i, int j) {return matrixArray[i][j];}

public void transpose () {

int rows = matrixArray.length;

int columns = matrixArray[0].length;

int[][] temp = new int[columns][rows];

for (int i=0; i<rows; i++)

for (int j=0; j<columns; j++)

temp[j][i] = matrixArray[i][j];

matrixArray = temp;

}

Q: What is the time performance of transpose()?

For a matrix with n rows and m columns, how many (array
access) operations are needed?

Can you think of a more efficient implementation?

One that doesn’t move any data?

public class MatrixReloaded {

private int[][] matrixArray;

private boolean isTransposed;

public MatrixReloaded (int rows, int columns) {

matrixArray = new int[rows][columns];

for (int i=0; i<rows; i++)

for (int j=0; j<columns; j++)

matrixArray[i][j] = 0;

isTransposed = false;

}

public void set (int i, int j, int value) {

}

public int get (int i, int j) {

}

public void transpose () {

}

}

What is the time performance of transpose()?

Does it depend on the size of the array?

How do the changes affect the user’s program?

1.3.4 Advantages of ADTs

• modularity — independent development, re-use,
portability, maintainability, upgrading, etc

• delay decisions about final implementation

• separate concerns of program and data structure design

• information hiding (encapsulation) — access by
well-defined interface

Also other OO benefits like:

• polymorphism — same operation can be applied to
different types

• inheritance — subclasses adopt from parent classes

1.4 What’s ahead?

Specifying, designing, implementing, analysing, and
selecting ADTs for collections.

• what data structures are most appropriate for what kinds
of tasks

• what choices are available for representing ADTs and
what are the trade-offs

– time efficiency

– space efficiency

– flexibility — bounded vs unbounded etc

We will cover a range of important, commonly used data
structures. For example:

• stacks

• queues

• lists

• maps

• arrays

• trees

• sets, tables and dictionaries

• hash tables

1.4.1 Structure of the Course

• Introduction

• Java concepts

• Examples of abstraction

• ADT specification

• Review of recursion and recursive data structures

• Examples of ADTs — Queues and Stacks

• Performance analysis for data structures

• Widely used data structures ⇒ all your favourites!

Topic 2

Java Primer

• Review of Java basics

• Primitive vs Reference Types

• Classes and Objects

• Class Hierarchies

• Interfaces

• Exceptions

Reading: Lambert & Osborne, App. A & Sec. 1.2, 2.1–2.7

2.1 Review of Java Basics

2.1.1 Primitive Data Types

byte short int long

float double

char

boolean

2.1.2 Local Variables

Scope: block in which defined

for (int i=0; i<4; i++) {

// do something with i

}

System.out.println(i);

Result?

2.1.3 Expressions

Built from variables, values, and operators.

arithmetic: +, -, *, /, %,...

logical: &&, ||, !,...

relational: =, !=, <, >, <=, >=,...

==, !=, equals

instanceOf

2.1.4 Control Statements

if and if-else

if (<boolean expression>)

<statement>

if (<boolean expression>)

<statement>

else

<statement>

where <statement> is a single or compound statement.

while and do-while

while (<boolean expression>)

<statement>

do

<statement>

while (<boolean expression>)

for

for (<initialiser list>; <termination list>; <update list>)

<statement>

Example

for (int i=0; i<4; i++) System.out.println(i);

0

1

2

3

for (String s=""; !s.equals("aaaa"); s=s+"a")

System.out.println(s.length());

?

Arrays

Declaration

<type>[] <name>;

<type>[]...[] <name>;

Instantiation

<name> = new <type>[<int-exp>];

<name> = new <type>[<int-exp>]...[<int-exp>];

Example

int[][] matrixArray;

matrixArray = new int[rows][columns];

2.1.5 Methods

Methods have the form (ignoring access modifiers for the
moment)

<return type> <name> (<parameter list>) {

<local data declarations and statements>

}

Example

void set (int i, int j, int value) {

matrixArray[i][j]=value;

}

int get (int i, int j) {return matrixArray[i][j];}

Parameters are passed by value:

// a method...

void increment (int i) {i++;}

// some code that calls it...

i=7;

increment(i);

System.out.println(i);

Result?

2.2 Primitive Types vs Reference Types

Primitive types

• fixed size

• size doesn’t change with reassignment

⇒ store value alongside variable name

Reference types (eg. Arrays, Strings, Objects)

• size may not be known in advance

• size may change with reassignment

⇒ store address alongside variable name

mem. add.

mem. add.

15
integer i = 15;

Object

Array a = new Array[10]; a Data

i

The variable holds a pointer or reference to the object’s data

⇒ reference types

2.2.1 Assignment

Primitive Type

int i = 7;

int j = i;

j++;

System.out.println(i);

?

Reference Type

int[] a = {0,1,2,3};

int[] b = a;

b[0]++;

System.out.println(a[0]);

?

Parameter Passing

Primitive Type

// a method...

void increment (int i) {i++;}

// some code that calls it...

i=7;

increment(i);

System.out.println(i);

?

Reference Type

// a method...

void incrementAll (int[] a) {

for (int i=0; i<a.length; i++) a[i]++;

}

// some code that calls it...

int[] b={0,1,2,3};

incrementAll(b);

System.out.println(b[0]);

?

2.2.2 Equality

Primitive Type

int i=7;

int j=7;

System.out.println(i==j);

?

Reference Type

int[] a = {0,1,2,3}

int[] b = {0,1,2,3}

System.out.println(a==b);

System.out.println(Arrays.equals(a,b));

?

2.3 Classes and Objects

2.3.1 What are they?

Aside from a few built-in types (arrays, strings, etc) all
reference types are defined by a class.

A class is a chunk of software that defines a type, its
attributes or instance variables (also known as member
variables), and its methods. . .

class Box {

// instance variables

double width, length, height;

// constructor method

Box (double w, double l, double h) {

width = w;

length = l;

height = h;

}

// additional method

double volume () {return w * l * h;}

}

The runtime engine creates an object or instance of the
class each time the new keyword is executed:

Box squareBox, rectangularBox;

...

squareBox = new Box(20,20,20);

rectangularBox = new Box(20,30,10);

2.3.2 Different kinds of Methods

constructor — tells the runtime engine how to initialise the
object

accessor — returns information about an object’s state
without modifying the object

mutator — changes the object’s state

2.3.3 Packages

A collection of related classes. E.g. java.io

In Java:

• must be in same directory

• directory name matches package name

Specifying your own package

package myMaths;

class Matrix {

...

If you don’t specify a package Java will make a default
package from all classes in the directory.

Using someone else’s package

package myMaths;

import java.io.*;

class Matrix {

...

Note that java.lang.* is automatically imported.

2.3.4 Access Modifiers

Specify access to classes, variables and methods.

public — accessible by all

private — access restricted to within class

(none) — access restricted to within package

protected — access to package and subclasses

2.3.5 The static keyword

Used for methods and variables in classes that don’t create
objects.

Example:

public class MatrixTest {

public static void main (String[] args) {

Matrix m = new Matrix(2,2);

m.set(0,0,1);

...

Called class variables and class methods.

Also used for “constants”.

Example:

public class Matrix {

static final int MAX_SIZE=100;

private int[][] matrixArray;

...

Keyword final means the value cannot be changed at
runtime.

We will use static rarely in this unit.

2.4 Class Hierarchies

Classes can be built from, or extend other classes.

Example:

public class Shape {

private double xPos, yPos;

public void moveTo (double xLoc, double yLoc) {

xPos = xLoc;

yPos = yLoc;

}

...

}

(More detail: see Lambert & Osborne, Sec. 2.5.)

public class Circle extends Shape {

private double radius;

public double area () {

return Math.PI * radius * radius;

}

}

We will not be building hierarchies extensively in this unit.
However:

• You will see them in the text.

• You will see them in the Java API. Especially in the Java
Collections classes.

• We will be using some very important features. . .

1. Any superclass reference (variable) can hold and access
a subclass object.

Example:

public class ShapeTest {

public static void main (String[] args) {

Shape sh; // declare reference of type Shape

sh = new Circle(); // hold a Circle object in sh

sh.moveTo(2.0,3.0); // access a Shape method

double a=sh.area(); // access a Circle method

...

2. All Java classes are (automatically) subclasses of Object

Example:

Object holdsAnything;

holdsAnything = new Circle();

holdsAnything = new Rectangle();

holdsAnything = new Shape();

Example:

Object[] arrayOfAnythings = new Object[10];

arrayOfAnythings[0] = new Circle();

arrayOfAnythings[1] = new Rectangle();

arrayOfAnythings[2] = new Shape();

2.4.1 Wrappers

There is one thing our arrayOfAnythings can’t hold:
primitives!

Since primitives are not classes, they aren’t subclasses of
Object.

Example:

Object holdsAnything;

holdsAnything = 42;

Compilation:

javac Test.java

Test.java:11: incompatible types

found : int

required: java.lang.Object

holdsAnything = 42;

^

1 error

Solution

“Wrap” primitives inside an object. . .

We could write our own “wrapper classes”:

Example:

public class myInteger {

private int theInt;

public myInteger (int i) {theInt = i;}

public int get () {return theInt;}

}

Now we can have:

Object holdsAnything;

holdsAnything = new myInteger(42);

But it is unnecessary: Java provides wrappers for all
primitives:

⇒ Character, Boolean, Integer, Float, ...

See the Java API for details.

Note: A new feature in Java 1.5 is autoboxing — automatic
wrapping and unwrapping of primitives.

⇒ Compile time feature - doesn’t change what is “really”
happening.

2.4.2 Casting

While a superclass variable can be assigned a subclass
object, a subclass variable cannot be assigned an object
held in a superclass, even if that object is a subclass object.

Example:

Object o1 = new Object(); // OK

Object o2 = new Character(’a’); // OK

Character c1 = new Character(’a’); // OK

Character c2 = new Object(); // Error

o1 = c1; // OK

c1 = o1; // Error

In the last statement, even though o1 is now “holding”
something that was created as a Character, its reference (ie
its class) is Object.

To get the “Character” back, we have to cast it back down
the hierarchy:

o1 = c1; // OK

c1 = (Character) o1; // OK - casted back to Character

2.5 Interfaces

An interface:

• looks much like a class, but uses the keyword interface

• contains a list of method headers — name, list of
parameters, return type (and exceptions)

• no method contents (they are called abstract)

• no public/private necessary — they are implicitly
public

Example:

public interface Matrix {

public void set (int i, int j, int value);

public int get (int i, int j);

public void transpose ();

}

Classes can implement an interface:

Implementation 1:

public class MatrixReloaded implements Matrix {

private int[][] matrixArray;

public void transpose () {

// do it one way

}

...

Implementation 2:

public class MatrixRevolutions implements Matrix {

private int[][] somethingDifferent;

public void transpose () {

// do it yet another way

}

Why use interfaces?

1. Can be used like a superclass:

Example:

Matrix[] myMatrixHolder = new Matrix[10];

myMatrixHolder[0] = new MatrixReloaded(2,2);

myMatrixHolder[1] = new MatrixRevolutions(20,20);

...

myMatrixHolder[0] = myMatrixHolder[1];

2. Specifies the methods that any implementation must
implement.

Example:

Matrix[] myMatrixHolder = new Matrix[10];

myMatrixHolder[0] = new MatrixReloaded(2,2);

myMatrixHolder[1] = new MatrixRevolutions(20,20);

...

for (int i=0; i<10; i++)

myMatrixHolder[i].transpose();

Note: this doesn’t mean the methods are implemented
correctly.

This is an important software engineering facility

• follows on from Information Hiding in Topic 1

— allows independent development and maintenance of
libraries and programs that use them

• will be used extensively in this unit to specify ADTs

More examples — see the Java API

eg. the Collection interface

2.6 Exceptions

• special built-in classes

• used by Java to determine what to do when something
goes wrong

• thrown by the Java virtual machine (JVM)

Example program

int[] myArray = {0,1,2,3};

System.out.println("The last number is:");

System.out.println(myArray[4]);

Output

The last number is:

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 4

at Test.main(Test.java:31)

Process Test exited abnormally with code 1

See the Java API for ArrayIndexOutOfBoundsException.

We can throw exceptions ourselves.

if (<condition>)

throw new <exception type> (<message string>);

Example:

double squareRoot (double x) {

if (x < 0)

throw new ArithmeticException("Can’t find square root

of -ve number.");

else {

// calculate and return result

}

}

Have a look for ArithmeticException in the Java API.

Two types of exceptions:

checked — most Java exceptions

— must be caught by the method, or passed (thrown) to
the calling method

unchecked — RuntimeException and its subclasses

— don’t need to be handled by programmer (JVM will
halt)

For simplicity we will primarily use unchecked exceptions in
this unit.

We can also create our own exception classes (by
subclassing Java’s exceptions).

However a full treatment of exceptions is not part of this unit.

The main use of exceptions in this unit will be for checking
preconditions.

Reading: Lambert & Osborne, Sec. 1.12

Topic 3

Recursive Data Structures and Linked
Lists

• Review of recursion: mathematical functions

• Recursive data structures: lists

• Implementing linked lists in Java

• Java and pointers

• Trees

Reading: L & O, Sections 10.1, 5.3–5.4

3.1 Recursion

Powerful technique for solving problems which can be
expressed in terms of smaller problems of the same kind.

eg. Towers of Hanoi

Aim: move all disks to the middle peg, moving one disk at a
time, without ever putting a smaller disk on a larger one.

Exercise: Provide a recursive strategy for solving the
Towers of Hanoi for arbitrary numbers of disks.

The Towers of Hanoi is also a good example of
computational explosion.

It is alleged that the priests of Hanoi attempted to solve this
puzzle with 64 disks. Even if they were able to move one
hundred disks every second, this would have taken them
more than 5,000,000,000 years!

3.1.1 Example: Common mathematical functions

Start with just increment and decrement. . .

// Class for doing recursive maths. Assumes all integers

// are non-negative (for simplicity no checks are made).

public class RMaths {

// method to increment an integer

public static int increment(int i) {return i + 1;}

// method to decrement an integer

public static int decrement(int i) {return i - 1;}

// more methods to come here...

Note: All methods are:

• public — any program can access (use) the methods

• static — methods belong to the class (class methods),
rather than objects (instances) of that class

In fact we are not using objects here at all.

increment and decrement take int arguments and return
int’s.

They are “called” by commands of the form
RMaths.increment(4)

— that is, the method increment belonging to the class
RMaths.

public class RMathsTest {

// simple method for testing RMaths

public static void main(String[] args) {

System.out.println(RMaths.increment(4));

}

}

Addition: express what it means to add something to y in
terms of adding something to y − 1 (the decrement of y)

x + y = (x + 1) + (y − 1)

/*

* add two integers

*/

public static int add(int x, int y) {

if (y == 0) return x;

else return add(increment(x), decrement(y));

}

Recursive programs require:

• one or more base cases or terminating conditions

• one or more recursive cases or steps — routine “calls
itself”

Q: What if there is no base case?

Multiplication

x× y = x + (x× (y − 1))

/*

* multiply two integers

*/

public static int multiply(int x, int y) {

if (y == 0) return 0;

else return add(x, multiply(x, decrement(y)));

}

Similar code can be written for other functions such as
power and factorial ⇒ see Exercises

Recursion is:

• powerful — can solve arbitrarily large problems

• concise — code doesn’t increase in size with problem

• closely linked to very important proof technique called
mathematical induction

• basis of logic programming and functional programming
(logic program to solve ‘Towers of Hanoi’ takes just two
lines!)

• not necessarily efficient

– we’ll see later that the time taken by this
implementation of multiplication increases with
approximately the square of the second argument

– long multiplication taught in school is approximately
linear in the number of digits in the second argument

3.2 Recursive Data Structures

Recursive programs usually operate on recursive data
structures

⇒ data structure defined in terms of itself

3.2.1 Lists

A list is defined recursively as follows:

• an empty list (or null list) is a list

• an item followed by (or linked to) a list is a list

Notice the definition is like a recursive program — it has a
base case and a recursive case!

Building a list. . .

link

nulla

nullabc

nullab

null

3.3 A LinkedList Class in Java

3.3.1 The Links

Defined recursively. . .

// link class for chars

class LinkChar {

char item; // the item stored in this link

LinkChar successor; // the link stored in this link

LinkChar (char c, LinkChar s) {item = c; successor = s;}

}

Notice constructor makes a new link from an item and an
existing link.

3.3.2 The Linked List

Next we need an object to “hold” the links. We will call this
LinkedListChar.

Contains a variable which is either equal to “null” or to the
first link (which in turn contains any other links), so it must
be of type LinkChar. . .

class LinkedListChar {

LinkChar first;

}

Now the methods. . .

• Constructing an empty list

class LinkedListChar {

LinkChar first;

LinkedListChar () {first = null;} // constructor

}

Conceptually think of this as assigning a “null object” (a null
list) to first. (Technically it makes first a null-reference,
but don’t worry about this subtlety for now.)

• Adding to the list

class LinkedListChar {

LinkChar first;

LinkedListChar () {first = null;}

// insert a char at the front of the list

void insert (char c) {first = new LinkChar(c, first);}

}

first =

nulla

nullabc

nullab

nullfirst =

first =

first =

To create the list shown above, the class that uses
LinkedListChar, say LinkedListCharTest, would include
something like. . .

LinkedListChar myList; // myList is an object

// of type LinkedListChar

myList = new LinkedListChar(); // call constructor to

// create empty list

myList.insert(’a’);

myList.insert(’b’);

myList.insert(’c’);

• Examining the first item in the list

// define a test for the empty list

boolean isEmpty () {return first == null;}

// if not empty return the first item

char examine () {if (!isEmpty()) return first.item;}

• Deleting the first item in the list

void delete () {if (!isEmpty()) first = first.successor;}

first then refers to the “tail” of the list.

Note that we no longer have a reference to the previous first
link in the list (and can never get it back). We haven’t really
“deleted” it so much as “abandoned” it. Java’s automatic
garbage collection reclaims the space that the first link used.

⇒ This is one of the advantages of Java — in C/C++ we
have to reclaim that space with additional code.

The Complete Program
package DAT; // Its part of my DAT package.

import Exceptions.*; // Use a package of

// exceptions defined elsewhere.

/**

* A basic recursive (linked) list of chars.

* @author Cara MacNish

*/ // Lines between /** and */ generate

// automatic documentation.

public class LinkedListChar {

/**

* Reference to the first link in the list, or null if

* the list is empty.

*/

private LinkChar first; // private - Users cannot access this

// directly.

/**

* Create an empty list.

*/

public LinkedListChar () {first = null;} // the constructor

/**

* Test whether the list is empty.

* @return true if the list is empty, false otherwise

*/

public boolean isEmpty () {return first == null;}

/**

* Insert an item at the front of the list.

* @param c the character to insert

*/

public void insert (char c) {first = new LinkChar(c, first);}

/**

* Examine the first item in the list.

* @return the first item in the list

* @exception Underflow if the list is empty

*/

public char examine () throws Underflow {

if (!isEmpty()) return first.item;

else throw new Underflow("examining empty list");

}

// Underflow is an example of an exception.

// In this case it occurs (or is ‘‘thrown’’)

// if the user tries to examine an empty list.

/**

* Delete the first item in the list.

* @exception Underflow if the list is empty

*/

public void delete () throws Underflow {

if (!isEmpty()) first = first.successor;

else throw new Underflow("deleting from empty list");

}

// Many classes provide a string representation

// of the data, for example for printing,

// defined by a method called ‘‘toString()’’.

/**

* construct a string representation of the list

* @return the string representation

*/

public String toString () {

LinkChar cursor = first;

String s = "";

while (cursor != null) {

s = s + cursor.item;

cursor = cursor.successor;

}

return s;

}

}

3.4 Java and Pointers

Conceptually, the successor of a list is a list.

One of the great things about Java (and other suitable object
oriented languages) is that the program closely reflects this
“theoretical” concept — from a programmer’s point-of-view
the successor of a LinkChar is a LinkChar.

Internally, however, all instance variables act as references,
or “pointers”, to the actual data.

Therefore, a list that looks conceptually like

first = nullabc

internally looks more like

abc null

first

For simplicity of drawing, we will often use the latter type of
diagram for representing recursive data structures.

3.4.1 Freedom from Pointers

While Java uses references or pointers internally, the
programmer is freed from the task of having to manipulate
them. This is in contrast to many traditional languages (eg
Pascal, C, C++) where pointers must be explicitly handled by
the programmer.

Example: Pascal

type linktype = ^celltype;

celltype = record

item: char;

successor: linktype

end;

First = linktype;

A procedure to insert an item looks like:

procedure insert(c: char; var l: First);

var p: linktype;

begin

new(p);

p^.item := c;

p^.successor := l;

l := p;

end;

Compare this to:

void insert (char c) {first = new Link(c, first);}

Java allows us to abstract away from the details.

3.5 Trees

A tree is another example of a recursive data structure —
might be defined as follows:

• an null tree (or empty tree) is a tree

• an item followed by one or more trees is a tree

[Some examples of trees — see Wood p142]

Graphical representations. . .

tree =

a

b

b

tree

null null

nullnull

null

c

b null nullnullb c null nulla

More on trees later.

3.6 Summary

Recursive data structures:

• can be arbitrarily large

• support recursive programs

• are a fundamental part of computer science — they will
appear again and again in this and other courses

⇒ You need to understand them. If not, seek help!

We will see many in this course, including more on lists and
trees.

Topic 4

Data Abstraction and Specification of
ADTs

• Example — The “Reversal Problem” and a non-ADT
solution

• Data abstraction

• Specifying ADTs

• Interfaces

• javadoc documentation

• An ADT solution to the Reversal Problem

4.1 Aims

The aims of this topic are to:

1. provide a more detailed example of data type abstraction

2. introduce two example data types: the Queue and Stack

3. show how data types will be specified in this unit

4.2 The Reversal Problem and a non-ADT
solution

As a more detailed example of ADTs we consider the
reversal problem:

Given two character sequences A and B, is A the
reverse of B?

One solution: store in arrays, scan and compare from either
end · · ·!

import java.io.*;

/*

* Reversal program (not using ADTs).

* Accepts two character strings from the terminal, separated by

* whitespace, and determines whether one is the reverse of the

* other.

*/

public class Reversal {

// constant for maximum length of the input sequences

public final static int MAX_SEQUENCE = 100;

// main program

public static void main(String[] args) throws IOException {

// arrays for storing input sequences

char[] sequence1 = new char[MAX_SEQUENCE];

char[] sequence2 = new char[MAX_SEQUENCE];

// indices for first and second sequences

int index1 = 0;

int index2 = 0;

// other local variables

boolean isReverse = true;

char c;

// Read in the first sequence and store

c = (char) System.in.read();

while (c != ’ ’) {

sequence1[index1] = c;

index1++;

c = (char) System.in.read();

}

// Clear white space.

while (c == ’ ’) c = (char) System.in.read();

// Read in the second sequence and store

while (c != ’ ’ && c != ’\n’ && c != ’\r’) {

sequence2[index2] = c;

index2++;

c = (char) System.in.read();

}

// Compare the two sequences.

isReverse = index1 == index2;

index1 = 0;

index2--;

while (isReverse && index1 <= index2) {

isReverse = isReverse &&

sequence1[index1] == sequence2[index2-index1];

index1++;

}

if (isReverse) System.out.println("Yes that is the reverse.");

else System.out.println("No thats not the reverse.");

}

}

Notice that this program mixes

• “low-level” details of data storage (in arrays) and
manipulation (using indices), with

• the “high-level” goals of inputting and comparing
sequences.

⇒ difficult to modify, maintain, reuse, etc

Better solution — use ADTs!

4.3 Data abstraction

The above program integrates:

• data, and instructions to access it

• “higher-level” role of the program

We wish to take a more abstract view. . . can we use generic,
reusable data structures?

When dealing with the first sequence we. . .

• “Create” an empty sequence

• Append characters to the end

• Scan from beginning to end

• Don’t reuse scanned characters

But this is just what a queue, or FIFO (first-in, first-out
buffer), does!

Next..

Queue This Way

PASSPORTS

In general the operations on a queue include:

1. Create an empty queue

2. Test whether the queue is empty

3. Add a new latest element

4. Examine the earliest element

5. Delete the earliest element

From a user point-of-view, we don’t care how its
implemented — all we need in order to write our reversal
program is what operations are available to us.

(Implementations will be considered later.)

Operations needed for the second sequence are the same
as the first, except the elements added last are taken off first.

This is the operation of a stack, or LIFO (last-in first-out
buffer).

SYRUP

MAPLE

Operations on a stack:

1. Create an empty stack

2. Test whether the stack is empty

3. Add (push) a new element on the top

4. Examine (peek at) the top element

5. Delete (pop) the top element

Implementation of a stack — see Lab Exercises!

4.4 Specifying ADTs

We saw in Topic 1 that ADTs consist of a set of operations
on a set of data values. We can specify ADTs by listing the
operations (or methods).

The lists of operations on the previous pages are very
informal and not sufficient for writing code. For example

2. Test whether the queue is empty

doesn’t tell us the name of the method, what arguments it is
called with, what is returned, and whether it can throw an
exception.

In these notes we will specify ADTs by providing at least:

• the name of each operation

• example parameters (the implementation may use
different parameter names, but will have the same
number, type and order)

• an explanation of what the operation does — in
particular, any constraints on, or changes to, the
parameters, changes to the ADT instance on which the
method operates, what is returned and any exceptions
thrown

Thus a Queue ADT might be specified by the following
operations:

1. Queue(): create an empty queue

2. isEmpty(): return true if the queue is empty, false
otherwise

3. enqueue(e): e is added as the last item in the queue

4. examine(): return the first item in the queue, or throw an
exception if the queue is empty

5. dequeue(): remove and return the first item in the queue,
or throw an exception if the queue is empty

Note: No variable in the argument list corresponds to the
object itself (the queue). This is because the methods are
instance methods — whenever they are called they will
“belong” to a particular object.

eg.

Queue q = new Queue();

System.out.println(q.isEmpty());

In data structure texts for non-object-oriented languages
such as Pascal, you will find an extra argument in the
specification of operations.

Similarly, the specification of a Stack ADT:

1. Stack(): create an empty stack

2. isEmpty(): return true if the stack is empty, false
otherwise

3. push(e): item e is pushed onto the top of the stack

4. peek(): return the item on the top of the stack, or throw
an exception if the stack is empty

5. pop(): remove and return the item on the top of the
stack, or throw an exception if the stack is empty

Note: The use of upper and lowercase in method names
should follow the rules described in the document Java
Programming Conventions.

4.5 Interfaces

As we have seen, Java itself provides a rigorous way of
specifying the methods in classes: interfaces.

Interfaces provide a natural way of specifying ADTs in
programs and enforcing those specifications.

Example · · ·!

// Interface for a Queue of characters.

public interface QueueChar {

/*

* test whether the queue is empty

* return true if the queue is empty, false otherwise

*/

public boolean isEmpty ();

/*

* insert an item at the back of the queue

*/

public void enqueue (char a);

/*

* examine and return the item at the front of the queue

* throw an Underflow exception if the queue is empty

*/

public char examine () throws Underflow;

/*

* remove the item at the front of the queue

* return the removed item

* throw an Underflow if the queue is empty

*/

public char dequeue () throws Underflow;

}

Note: This interface specifies a queue of characters
(chars). This can be seen in the argument to enqueue and
the return types of examine and dequeue.

In this course (particularly in the Labs) we will specify data
structures using interfaces, and in most cases consider a
number of alternative implementations.

(We’ll look at different implementations of the QueueChar
interface later.)

4.6 javadoc Documentation

Many texts will describe ADT operations in terms of
preconditions and postconditions.

preconditions — constraints on variable values for the
operations to work correctly

post-conditions — what the operation does, in particular
changes to the input variables

In this course we will replace these, as far as possible, with
the facilities provided by the documentation program
javadoc.

The documentation for each method should include:

• a short general description of the method

• a @param statement describing each parameter

• a @return statement describing the value/object returned
(except where the return type is void)

• an @exception statement describing each exception
thrown

The javadoc program automatically generates HTML on-line
documentation from these comments.

Example

/**

* remove the item at the front of the queue

* @return the removed item

* @exception Underflow if the queue is empty

*/

public char dequeue () throws Underflow;

Here the “precondition” is that the queue must be non-empty,
the “postcondition” is that the front element is deleted.

The final QueueChar interface · · ·!

package DAT; // make this interface part of a package

// (or library) called DAT

import Exceptions.*; // use a package of exceptions called

// Exceptions (contains Underflow)

/**

* Interface for Queue of characters.

* @author Cara MacNish // some other javadoc fields

*/

public interface QueueChar {

/**

* test whether the queue is empty

* @return true if the queue is empty, false otherwise

*/

public boolean isEmpty ();

/**

* insert an item at the back of the queue

* @param a the item to insert

*/

public void enqueue (char a);

/**

* examine the item at the front of the queue

* @return the first item

* @exception Underflow if the queue is empty

*/

public char examine () throws Underflow;

/**

* remove the item at the front of the queue

* @return the removed item

* @exception Underflow if the queue is empty

*/

public char dequeue () throws Underflow;

}

Notes:

• Full javadoc documentation must be included with code
that you submit on this course.

• We will sometimes omit documentation (or break
formatting rules) in lectures to fit programs on slides.

4.7 An ADT solution to the reversal problem

Given specifications for Queue and Stack ADTs, which we
assume for the moment are implementations of interfaces
QueueChar and StackChar called QueueCharImplementation

and StackCharImplementation respectively, the Reversal
program can be rewritten at a more abstract level.

Program · · ·!

package DAT;

import java.io.*;

import Exceptions.*;

/**

* Reversal program using ADTs.

* Accepts two character strings from the terminal, separated by

* whitespace and determines whether one is the reverse of the other.

* @author Cara MacNish

*/

public class ReversalADT {

/**

* main program

* @param args command line arguments

* @exception Exception passed to interpreter

*/

public static void main(String[] args) throws Exception {

// queue for storing first input sequence

QueueChar q = new QueueCharImplementation();

// stack for storing second input sequence

StackChar s = new StackCharImplementation();

// other local variables

boolean isReverse = true;

char c;

// Read in the first sequence and store characters in a queue.

c = (char) System.in.read();

while (c != ’ ’ && c != ’\n’ && c != ’\r’) {

q.enqueue(c);

c = (char) System.in.read();

}

// Clear white space.

while (c == ’ ’) c = (char) System.in.read();

// Read in the second sequence and store characters in a stack.

while (c != ’ ’ && c != ’\n’ && c != ’\r’) {

s.push(c);

c = (char) System.in.read();

}

// Compare the two sequences.

while (isReverse && !q.isEmpty() && !s.isEmpty())

isReverse = isReverse && q.dequeue() == s.pop();

if (isReverse && q.isEmpty() && s.isEmpty())

System.out.println("Yes that is the reverse.");

else System.out.println("No thats not the reverse.");

}

}

Advantages over previous version

• Program ‘reads’ better

– more ‘declarative’

– easier to follow and debug

• Modular

– Implementation independent — easier to
change/upgrade

– Division of work-load

4.8 Summary

• When programming we should look for abstractions of
the data — could we use a generic data structure (ADT)
rather than “reimplement the wheel”?

• ADTs can be specified by listing operations and
explaining how the object and arguments are affected

• More rigorous specifications can be enforced in Java
using interfaces

• ADT operations (methods) should be described within
the implementation using javadoc comments

Next we will look at implementations for the Queue. . .

Topic 5

Queues

• Implementations of the Queue ADT

• Queue specification

• Queue interface

• Block (array) representations of queues

• Recursive (linked) representations of queues

Reading: Lambert & Osborne, Sect. 8.1–8.4.

5.1 Educational Aims

The aims of this topic are to:

1. Introduce two main ways of implementing collection
classes:

• block (array-based) implementations, and

• linked (recursive) implementations

2. Introduce pros and cons of the two structures.

3. Develop basic skills in manipulating these two kinds of
structures.

5.2 Specification

Recall that in a queue, or FIFO, elements are added to one
end, and read/deleted from the other, in chronological order.

1. Queue(): create an empty queue

2. isEmpty(): return true if the queue is empty, false otherwise

3. enqueue(e): e is added as the last item in the queue

4. examine(): return the first item, error if the queue is empty

5. dequeue(): remove and return first item, error if queue empty

For simplicity we will begin with queues of chars.

5.2.1 Classification of ADT operations:

constructors are used to create data structure instances

eg. Queue

checkers report on the “state” of the data structure

eg. isEmpty

manipulators examine and modify data structures

eg. enqueue, examine, dequeue

5.3 Interface

import Exceptions.*;

// Character queue interface.

public interface QueueChar { // some javadoc comments omitted

/**

* test whether the queue is empty

* @return true if the queue is empty, false otherwise

*/

public boolean isEmpty ();

/**

* add a new item to the queue

* @param a the item to add

*/

public void enqueue (char a);

/**

* examine the first item in the queue

* @return the first item

* @exception Underflow if the queue is empty

*/

public char examine () throws Underflow;

/**

* remove the first item in the queue

* @return the first item

* @exception Underflow if the queue is empty

*/

public char dequeue() throws Underflow;

5.4 Block Representations

Simplest representation:

• sequence of elements stored in array

• indices (counters) indicating first and last element

0

? a b b a ? ? ? ?

1 2 3 4 5 6 7 8 9

first last

?

Disadvantage: queue will be bounded! — can only
implement a variation on the spec:

3. enqueue(e): e is added as the last item in the queue,
or error if the queue is full

For convenience we will include another checker:

6. isFull(): return true if the queue is full, false otherwise

5.4.1 Class Declaration

import Exceptions.*;

/**

* Block representation of a character queue.

* The queue is bounded.

*/

public class QueueCharBlock implements QueueChar {

Notice implementing interface — class will only compile
without error if it provides all methods specified in the
interface.

/**

* an array of queue items

*/

private char[] items;

/**

* index for the first item

*/

private int first;

/**

* index for the last item

*/

private int last;

5.4.2 Modifiers

enqueue, examine and dequeue are straightforward. . .

/**

* add a new item to the queue

* @param a the item to add

* @exception Overflow if queue is full

*/

public void enqueue (char a) throws Overflow {

if (!isFull()) {

last++;

items[last] = a;

}

else throw new Overflow("enqueuing to full queue");

}

/**

* examine the first item in the queue

* @return the first item

* @exception Underflow if the queue is empty

*/

public char examine () throws Underflow {

if (!isEmpty()) return items[first];

else throw new Underflow("examining empty queue");

}

/**

* remove the first item in the queue

* @return the first item

* @exception Underflow if the queue is empty

*/

public char dequeue() throws Underflow {

if (!isEmpty()) {

char a = items[first];

first++;

return a;

}

else throw new Underflow("dequeuing from empty queue");

}

5.4.3 Constructors and Checkers

To see how to code the constructor and isEmpty consider
successive deletions until first catches last.

first

a ?? ? ? ? ? ?

last last

first

The queue has one element if first == last, and is
therefore empty when first == last + 1 . . .

/**

* test whether the queue is empty

* @return true if the queue is empty, false otherwise

*/

public boolean isEmpty () {return first == last + 1;}

Java arrays number from 0, so first is initialised to 0. . .

/**

* initialise a new queue

* @param size the size of the queue

*/

public QueueCharBlock (int size) {

items = new char[size];

first = 0;

last = -1;

}

The queue is full if there is simply no room left in the
array. . .

/**

* test whether the queue is full

* @return true if the queue is full, false otherwise

*/

public boolean isFull () {return last == items.length - 1;}

Notes

• length is an instance variable of an array object, and
contains the size of the array.

• Since arrays number from 0, the nth element has index
n− 1.

5.4.4 Alternative block implementations

Problem: as elements are deleted the amount of room left
for the queue is eroded — the space in the array is not
reused.

Solution: wrap queue around. . .

0

first

f e r na n d o

last

987654321

Conceptually this forms a cyclic queue (or cyclic buffer). . .

last

a

n

d

o

n

r

e

f

first

Effects on the above program. . .

• first and last must be incremented until they reach
the end of the array, then reduced to 0. This can be
achieved in a concise way using the % (“mod”) operation.
eg:

public void enqueue (char a) {

if (!isFull()) {

last = (last + 1) % items.length;

items[last] = a;

}

else throw new Overflow("enqueuing to full queue");

}

• A queue is now empty when:
first == (last + 1) % items.length

Problem: The above condition also represents a full
queue!

One solution — define queue as full when it contains
items.length-1 elements and use the condition:

first == (last + 2) % items.length

s

first

f e r na n d o

9876543210

last

But now a queue created to hold n objects only has
room for n− 1 objects

⇒ modify the constructor. . .

public QueueCharCyclic (int size) {

items = new char[size+1]; // add 1 to array size

first = 0;

last = size; // start last at end of block

}

Another solution — instead of two indices, keep one
index for the first element, and a count of the size of the
queue.

⇒ Exercises!

5.5 Recursive (Linked) Representation

Biggest problem with block representation — predefined
queue length

Solution: use a recursive structure!

Recall singly linked list. . .

abc null

first

For a queue we need to be able to access both ends — one
to insert and one to delete.

Although the end can be accessed by following the
references down the list, it is more efficient to store
references to both ends. . .

abc null

lastfirst

5.5.1 Class Declaration

import Exceptions.*;

/**

* Linked list representation of a queue of characters.

* The queue is unbounded.

*/

public class QueueCharLinked implements QueueChar {

/**

* reference to the front of the queue, or null if

* the queue is empty

*/

private LinkChar first;

/**

* reference to the back of the queue, or null if

* the queue is empty

*/

private LinkChar last;

}

5.5.2 Constructors and Checkers

Empty queue:

first → null

last → null

Queue and isEmpty are easy. . .

/**

* initialise a new Queue

*/

public QueueCharLinked () {

first = null;

last = null;

}

/**

* test whether the queue is empty

* @return true if the queue is empty, false otherwise

*/

public boolean isEmpty () {return first == null;}

5.5.3 Examining and Dequeueing

Examining and dequeueing are easy!

Examining is the same as for the linked list. . .

public char examine () throws Underflow {

if (!isEmpty()) return first.item;

else throw new Underflow("examining empty queue");

}

Dequeueing is the same as deleting in the linked list, except
that when the last item is dequeued, last must be assigned
null. . .

aa null null null

space not reclaimed

first last last first first last

public char dequeue () throws Underflow {

if (!isEmpty()) {

char c = first.item;

first = first.successor;

if (isEmpty()) last = null;

return c;

}

else throw new Underflow("dequeuing from empty queue");

}

5.5.4 Enqueueing

Enqueueing is also easy! Just reassign the null reference at
the end of the queue to a reference to another link, and
move last to the new last element. . .

ab null

first last

ab b null

ab b null

first last

first
last

. . . unless the queue is empty, then first and last must
both reference a new link. . .

public void enqueue (char a) {

if (isEmpty()) {

first = new LinkChar(a,null);

last = first;

}

else {

last.successor = new LinkChar(a,null);

last = last.successor;

}

}

5.6 Summary

We have seen a number of alternative representations for
the Queue ADT

• block (array with indices to endpoints)

– bounded

– may reserve space unnecessarily

– ‘eroded’ with use

• block with wrap around (cyclic)

– bounded

– space reserved unnecessarily

– not ‘eroded’

• recursive (linked list with references to endpoints)

– unbounded

– no unnecessary space wasted

– no ‘erosion’ of space — garbage collection

Next — efficiency comparisons. . .

Topic 6

Performance Analysis 1: Introduction

• Why analyse performance?

• Types of performance measurement

– empirical

– simulational

– analytical

• An example of analytical analysis using Queue

• Introduction to growth rates

Reading: Lambert and Osborne, Section 4.1.

6.1 Educational Aims

The aims of this topic are to:

1. begin thinking about the implications of the choices you
make for ADT performance

2. introduce simple metrics for assessing algorithm
performance, which will later lead to
mathematically-based techniques

6.2 Why performance analysis?

• Comparison

– choice of ADT

– choice of implementation

– trade-offs — may be no clear winner/depend on
calling program

• Improvement

– identification of expensive operations, bottlenecks

– improved implementations within ADTs

– improved implementation of calling programs

6.3 Types of Performance Measurement

Empirical measurement

We will see that the most efficient queue ADT to use
depends on the program that uses it — which operations are
used most often.

If we have access to the program(s), we may be able to
measure the performance in those programs, on real data —
called evaluation in context.

This is the “get yer hands dirty” approach. Run the system
with real-world input and observe, or monitor (automatically),
the results.

Can compare data structures on the same problems (same
machine, same compiler, etc)

⇒ benchmark programs

• Useful if test input is close to expected input.

• Not much use if we are developing eg a library of
modules for use in many different contexts

Simulational Measurement

Construct a (computer) model of system and evaluate
performance with simulated data.

eg. US nuclear weapons defence system

A computer program normally acts as its own model — run
on simulated data (often generated using pseudo-random
numbers)

However a simplified model may be built, or the program
modified to fit the simulated data.

Advantages

• nondestructive

• cheap (?)

• fast (?)

Disadvantages

• only as good as the simulations

• can never be sure it matches reality

Analytical Measurement

Construct a mathematical or theoretical model — use
theoretical techniques to estimate system performance.

Usually

• coarse estimates

• growth rates, complexity classes rather than ‘actual’ time

• worst case or average case

But. . . !

• fundamental view of behaviour — less susceptible to

– speed of hardware, number of other processes
running, etc

– choice of data sets

– unrepresentative examples, spurious responses

• gives a better understanding of the problems

– why is it slow?

– could it be improved?

We will concentrate on analytical analyses.

6.4 Example: A Basic Analysis of the Queue
ADTs

As an example of comparison of ADT performance we
consider two representations of queues — block (without
wraparound) and recursive — using a crude time estimate

Simplifying assumptions:

• each high-level operation (arithmetic operation, Boolean
operation, subscripting, assignment) takes 1 time unit

• conditional statement takes 1 time unit + time to
evaluate Boolean expression + time taken by most time
consuming alternative (worst-case assumption)

• field lookup (“dot” operation) takes 1 time unit

• method takes 1 (for the call) plus 1 for each argument
(since each is an assignment)

• creating a new object (from a different class) takes Tc

time units

6.4.1 Block representation queues (without wraparound)

public QueueCharBlock (int size) { //2

items = new char[size]; //1+Tc

first = 0; //1

last = -1; //1

}

5 + Tc time units

public boolean isEmpty () {return first == last + 1;}

4 time units

public boolean isFull () {return last == items.length - 1;}

5 time units

public void enqueue (char a) throws Overflow { //2

if (!isFull()) { //7

last++; //1

items[last] = a; //2

}

else throw new Overflow("enqueuing to full queue");

}

12 time units

Exercise:

How many time units for each of the following. . .

public char examine () throws Underflow {

if (!isEmpty()) return items[first];

else throw new Underflow("examining empty queue");

}

public char dequeue() throws Underflow {

if (!isEmpty()) {

char a = items[first];

first++;

return a;

}

else throw new Underflow("dequeuing from empty queue");

}

Summary for Block Implementation

isEmpty, enqueue, examine and dequeue are constant time
operations

Queue is constant time if Tc is constant time

6.4.2 Recursive (linked) representation queues

public QueueCharLinked () {

first = null;

last = null;

}

3 time units

public boolean isEmpty () return first == null;

3 time units

public void enqueue (char a) { //2

if (isEmpty()) { //4

first = new LinkChar(a,null); //1+Tc

last = first; //1

}

else {

last.successor = new LinkChar(a,null); //2+Tc

last = last.successor; //2

}

}

10 + Tc

public char examine () throws Underflow {

if (!isEmpty()) return first.item;

else throw new Underflow("examining empty queue");

}

8 units

public char dequeue () throws Underflow { //1

if (!isEmpty()) { //5

char c = first.item; //2

first = first.successor; //2

if (isEmpty()) last = null; //5

return c; //1

}

else throw new Underflow("dequeuing from empty queue");

}

16 units

Summary for Linked Implementation

Again all are constant time, assuming Tc is.

Comparison. . .

block recursive

Queue 5 + Tc 3

isEmpty 4 3

enqueue 12 10 + Tc

examine 8

dequeue 16

. . . shows no clear winner, especially given

• estimates are very rough — many assumptions

• dependent on relative usage of operations in the
programs calling the ADT — eg. is isEmpty used more
or less than dequeue

We will generally not be interested in these “small”
differences (eg 5 units vs 3 units) — given the assumptions
made these are not very informative.

Rather we will be interested in classifying operations
according to rates of growth. . .

6.5 Growth Rates

Q: If it takes 2 hours to roast a turkey, how long does it take
to cook a mammoth?

A: Need to make some assumptions. . .

Chef 1: Turkey 10kg, Mammoth 1000kg

Temporal-calorific-multiplier c =
2

10
= 0.2 hrs/kg

Cooking time t = 0.2× 1000 = 200 hrs

Chef 2: Turkey 10kg, Mammoth 1000kg

A little more distance for the heat to penetrate takes
a lot more heat. In fact each centimetre of radius
takes 6 times as long as the previous one. Radius
increases with approx cube root of volume, so cook
time increases with square of volume. Volume is
proportional to mass. Therefore cook time increases
with square of mass.

Temporal-calorific-multiplier c =
2

102
hrs/kg2

Cooking time t =
2

100
× 10002 = 20 000 hrs

Chef 3: Turkey 10kg, Mammoth 1000kg

Heat is hanging around in the rest of the unused
oven space anyway, although for bigger animals you
need a bigger oven, which is slower to heat up.
Doubling the mass only adds a constant amount to
the cooking time.

Temporal-calorific-multiplier c =
2

log 10

Cooking time t =
2

log 10
× log(1000) = 6 hrs

For comparative purposes exact numbers are pretty
irrelevant! It is the rate of growth that is important.

We will abstract away from inessential detail. . .

• ignore specific values of input and just consider the
number of items, or “size” of input

• ignore precise duration of operations and consider the
number of (specific) operations as abstract measure of
time

• ignore actual storage space occupied by data elements
and consider number of items stored as abstract
measure of space

6.6 Summary

Three types of performance measurement — empirical,
simulational, analytical.

We will concentrate on analytical:

• fundamental view of behaviour

• abstracts away from machine, data sets, etc

• helps in understanding data structures and their
implementations

Rather than attempting ‘fine grained’ analysis, comparing
small differences, we will concentrate on a coarser (but more
robust) analysis in terms of rates of growth.

Topic 7

Performance Analysis 2: Asymptotic
Analysis

• Choosing abstract performance measures

– worst case, expected case, amortized case

• Asymptotic growth rates

– Why use them? Comparison in the limit. “Big O”

• Analysis of recursive programs

Reading: Lambert and Osborne, Sections 4.2–4.3.

7.1 Educational Aims

The aims of this topic are:

1. to develop a mathematical competency in describing and
understanding algorithm performance, and

2. to begin to develop an intuitive feel for these
mathematical properties.

7.2 Worst Case, Expected Case, Amortized
Case

Abstract measures of time and space will still depend on
actual input data.

eg Exhaustive sequential search

public int eSearch(...) {

...

i = 0;

while (a[i] != goal && i < n) i++;

if (i == n) return -1; // goal not found

else return i;

}

Abstract time

• goal is first element in array — a units

• goal is last element in array — a + bn units

for some constants a and b.

Different growth rates — second measure increases with n.

What measure do we use? A number of alternatives. . .

7.2.1 Worst Case Analysis

Choose data which have the largest time/space
requirements.

Advantages

• relatively simple

• gives an upper bound, or guarantee, of behaviour —
when your client runs it it might perform better, but you
can be sure it won’t perform any worse

Disadvantages

• worst case could be unrepresentative — might be unduly
pessimistic

– knock on effect — client processes may perform
below their capabilities

– you might not get anyone to buy it!

Since we want behaviour guarantees, we will usually
consider worst case analysis in this course.

(Note there is also ‘best case’ analysis, as used by
second-hand car sales persons and stock brokers.)

7.2.2 Expected Case Analysis

Ask what happens in the average, or “expected” case.

For eSearch, a +
b

2
n, assuming uniform distribution over

input.

Advantages

• more ‘realistic’ indicator of what will happen in any given
execution

• reduces effects of spurious/non-typical/outlier examples

Disadvantages

• only possible if we know (or can accurately guess)
probability distribution over examples (with respect to
size)

• more difficult to calculate

• often does not provide significantly more information
than worst case when we look at growth rates

• may also be misleading. . .

7.2.3 Amortized Case Analysis
(or “Encouraging Long-termism in Forestry”)

Suppose that each day my company can perform one of two
operations:

1. plant a tree

2. cut down n trees

Greenpeace will give me $1 for each tree we plant.

Chop-n-Mulchit Woodchippers will give me $1 for each tree
we cut down.

Clearly we can make n times as much money (for the same
number of days) by chopping down trees as we can by
growing them!

— if d is the number of days, we make nd chopping, and
only d growing.

Whereas the return from “growing day” operations for a fixed
period of days is constant, the return from “chopping day”
ops appears to be linear in n

— bigger n, more money!

But what if trees are a finite resource — say we start with an
empty paddock?

Over time we can’t cut down more trees than we grow. For
each “cutting day” operation we need n “growing day”
operations. Averaged out over these n + 1 operations, our
return per day is

(n + n)dollars
(n + 1)days

=
(2n)dollars
(n + 1)days

≈ $2/day

That is, the “average” return per operation (day) is constant!

This is called an amortized analysis. The cost of an
expensive operation is amortized over the cheaper ones
which must accompany it.

In this case the “big picture” shows we can’t make as much
money as the “small picture” suggests.

Moral: Companies relying on natural resources need to look
at the amortized analysis!

In terms of more familiar data structures, a similar example
for a Multidelete Stack (adapted from Wood). . .

Create a new ADT MStack (multidelete stack) from Stack by
replacing the operation pop() with mPop(i) which removes i
elements from the top of the stack.

What is the performance of mPop on:

1. a block implementation?

2. a linked list implementation?

If each pop takes b time units, mPop(i) will take
approximately ib time units — linear in i!

Worst case is nb time units for stack of size n.

But. . .

Before you can delete i elements, need to (somewhere along
the way. . .) individually insert i elements, which takes i

operations and hence ic time for some constant c.

Total for those i + 1 operations is i(c + b). The time for i

operations is approximately linear in i. The average time for
each operation

i

i + 1
(c + b)

is approximately constant — independent of i.

More accurate for larger i, which is also where its more
important!

(
lim
i→∞

i

i + 1
(c + b) = c + b

)

7.3 Asymptotic Growth Rates

We have talked about comparing data structure
implementations — can use any of empirical, simulational or
analytical.

Focus on analytical:

• independent of run-time environment

• improves understanding of the data structures

We said we would be interested in comparisons in terms of
rates of growth.

Theoretical analysis also permits a deeper comparison
which the other methods don’t — comparison with the
performance barrier inherent in problems. . .

Wish to be able to make statements like:

Searching for a given element in a block of n

distinct elements using only equality testing takes n

comparisons in the worst case.

Searching for a given element in an ordered list
takes at least log n comparisons in the worst case.

These are lower bounds (on the worst case) — they tell us
that we are never going to do any better no matter what
algorithm we choose.

Again they reflect growth rates (linear, logarithmic)

In this section we formalise the ideas of analytical
comparison and growth rates.

7.3.1 Why Asymptopia

We would like to have a simple description of behaviour for
use in comparison.

• Evaluation may be misleading.

Recall cooking a woolly mamoth. . .

Assume t1 = 0.002m2, t2 = 0.2m, t3 = 2 log m.

Evaluating at m = 5 gives t1 < t2 < t3. This could be
misleading — for “serious” values of m the picture is the
opposite way around.

Want a description of behaviour over the full range.

• Want a closed form.

eg.
n(n + 1)

2
not n + (n− 1) + · · · + 2 + 1

Some functions don’t have closed forms, or they are
difficult to find — want a closed form approximation

• Want simplicity.

Difficult to see what 2n− 1
n log n2 +

3

2
n2−n does. We

want to abstract away from the smaller perturbations. . .

What simple function does it behave like?

Solution

Investigate what simple function the more complex one
tends to or asymptotically approaches as the argument
approaches infinity, ie in the limit.

Choosing large arguments has the effect of making less
important terms fade away compared with important ones.

eg. What if we want to approximate n4 + n2 by n4 ?

How much error?

n n4 n2 n2

n4 + n2

1 1 1 50%

2 16 4 20%

5 625 25 3.8%

10 10 000 100 1%

20 160 000 400 0.25%

50 6 250 000 2 500 0.04%

7.3.2 Comparison “in the Limit”

How well does one function approximate another?

Compare growth rates. Two basic comparisons. . .

1.
f(n)

g(n)
→ 0 as n→∞

⇒ f(n) grows more slowly than g(n).

eg.
n2

n4 + n2

2.
f(n)

g(n)
→ 1 as n→∞

⇒ f(n) is asymptotic to g(n).

eg.
n

n + 1

In fact we won’t even be this picky — we’ll just be
concerned whether the ratio approaches a constant
c > 0.

f(n)

g(n)
→ c as n→∞

This really highlights the distinction between different
orders of growth — we don’t care if the constant is
0.00000000001 !

7.3.3 ‘Big O’ Notation

In order to talk about comparative growth rates more
succinctly we use the ‘big O’ notation. . .

Definition

f(n) is O(g(n)) if there is a constant c > 0 and an integer
n0 ≥ 1 such that, for all n ≥ n0,

f(n) ≤ cg(n).

— f “grows” no faster than g, for sufficiently large n

— growth rate of f is bounded from above by g

Example:

Show (prove) that n2 is O(n3).

Proof

We need to show that for some c > 0 and n0 ≥ 1,

n2 ≤ cn3

for all n ≥ n0. This is equivalent to

1 ≤ cn

for all n ≥ n0.

Choosing c = n0 = 1 satisfies this inequality. "

Exercise:

Show that 5n is O(3n).

Exercise:

Show that 143 is O(1).

Exercise:

Show that for any constants a and b, an3 is O(bn3).

Example:

Prove that n3 is not O(n2).

Proof (by contradiction)

Assume that n3 is O(n2). Then there exists some c > 0 and
n0 ≥ 1 such that

n3 ≤ cn2

for all n ≥ n0.

Now for any integer m > 1 we have mn0 > n0, and hence

(mn0)
3 ≤ c(mn0)

2.

Re-arranging gives

m3n3
0 ≤ cm2n2

0

mn0 ≤ c

m ≤
c

n0

This is contradicted by any choice of m such that m >
c

n0
.

Thus the initial assumption is incorrect, and n3 is not O(n2).
"

From these examples we can start to see that big O analysis
focusses on dominating terms.

For example a polynomial

adn
d + ad−1n

d−1 + · · · + a2n
2 + a1n + a0

— O(nd)

— is O(nm) for any m > d

— is not O(nl) for any l < d.

Here adnd is the dominating term, with degree d.

For non-polynomials identifying dominating terms may be
more difficult.

Most common in CS

• polynomials — 1, n, n2, n3, . . .

• exponentials — 2n, . . .

• logarithmic — log n, . . .

and combinations of these.

7.3.4 ‘Big Ω’ Notation

Big O bounds from above. For example, if our algorithm
operates in time O(n2) we know it grows no worse than n2.
But it might be a lot better!

We also want to talk about lower bounds — eg

No search algorithm (among n distinct objects)
using only equality testing can have (worst case
time) growth rate better than linear in n.

We use big Ω.

Definition

f(n) is Ω(g(n)) if there are a constant c > 0 and an integer
n0 ≥ 1 such that, for all n ≥ n0,

f(n) ≥ cg(n).

— f grows no slower than g, for sufficiently large n

— growth rate of f is bounded from below by g

Note f(n) is Ω(g(n)) if and only if g(n) is O(f(n)).

7.4 Analysis of Recursive Programs

Previously we’ve talked about:

• The power of recursive programs.

• The unavoidability of recursive programs (they go hand
in hand with recursive data structures).

• The potentially high computational costs of recursive
programs.

They are also the most difficult programs we will need to
analyse.

It may not be too difficult to express the time or space
behaviour recursively, in what we call a recurrence relation
or recurrence equation, but general methods for solving
these are beyond the scope of the DSA course. (See
Discrete Structures.)

However some can be solved by common sense!

Example:

What is the time complexity of the recursive addition
program from Section 3?

public static int increment(int i) {return i + 1;}

public static int decrement(int i) {return i - 1;}

public static int add(int x, int y) {

if (y == 0) return x;

else return add(increment(x), decrement(y));

}

• if, else, ==, return, etc — constant time

• increment(x), decrement(y) — constant time

• add(increment(x), decrement(y))? — depends on
size of y

Recursive call is same again, except y is decremented.
Therefore, we know the time for add(...,y) in terms of the
time for

add(...,decrement(y)).

More generally, we know the time for size n input in terms of
the time for size n− 1. . .

T (0) = a

T (n) = b + T (n− 1), n > 1

This is called a recurrence relation.

We would like to obtain a closed form — T (n) in terms of n.

If we list the terms, its easy to pick up a pattern. . .

T (0) = a

T (1) = a + b

T (2) = a + 2b

T (3) = a + 3b

T (4) = a + 4b

T (5) = a + 5b

...

From observing the list we can see that

T (n) = bn + a

For any value of c such that c > b there exists n0 > 0 such
that T (n) ≤ cn for any n > n0.

ie T (n) is O(n) ⇒ linear in size of the input y

Example:

public static int multiply(int x, int y) {

if (y == 0) return 0;

else return add(x, multiply(x, decrement(y)));

}

• if, else, ==, return, etc — constant time

• decrement(y) — constant time

• add — linear in size of 2nd argument

• multiply — ?

We use:

a const for add terminating case

b const for add recursive case

a′ const for multiply terminating case

b′ const for multiply recursive case

x for the size of x

y for the size of y

Tadd(y) time for add with 2nd argument y

T (x, y) time for multiply with arguments x and y

Tabulate times for increasing y. . .

T (x, 0) = a′

T (x, 1) = b′ + T (x, 0) + Tadd(0) = b′ + a′ + a

T (x, 2) = b′ + T (x, 1) + Tadd(x) = 2b′ + a′ + xb + 2a

T (x, 3) = b′ + T (x, 2) + Tadd(2x) = 3b′ + a′ + (xb + 2xb) + 3a

T (x, 4) = b′ + T (x, 3) + Tadd(3x) = 4b′ + a′ + (xb + 2xb + 3xb) + 4a

...

Can see a pattern of the form

T (x, y) = yb′ + a′ + [1 + 2 + 3 + · · · + (y − 1)]xb + ya

We would like a closed form for the term
[1 + 2 + 3 + · · · + (y − 1)]xb.

Notice that, for example

1 + 2 + 3 + 4 = (1 + 4) + (2 + 3) =
4

2
.5

1 + 2 + 3 + 4 + 5 = (1 + 5) + (2 + 4) + 3 =
5

2
.6

In general,

1 + 2 + · · · + (y − 1) =
(y − 1

2

)
.y =

1

2
y2 −

1

2
y

(Prove inductively!)

Overall we get an equation of the form

a′′ + b′′y + c′′xy + d′′xy2

for some constants a′′, b′′, c′′, d′′.

Dominant term is xy2:
— linear in x (hold y constant)
— quadratic in y (hold x constant)

There are a number of well established results for different
types of problems. We will draw upon these as necessary.

7.5 Summary

Choosing performance measures

• worst case — simple, guarantees upper bounds

• expected case — averages behaviour, need to know
probability distribution

• amortized case — may ‘distribute’ time for expensive
operation over those which must accompany it

Asymptotic growth rates

• compare algorithms

• compare with inherent performance barriers

• provide simple closed form approximations

• big O — upper bounds on growth

• big Ω — lower bounds on growth

Analysis of recursive programs

• express as recurrence relation

• look for pattern to find closed form

• can then do asymptotic analysis

Topic 8

Objects and Iterators

• Generalising ADTs using objects

— wrappers, casting

• Iterators for Collection Classes

• Inner Classes

Reading: Lambert & Osborne, Sections 6.3–6.5;
2.3.5

8.1 Generalising ADTs to use Objects

Our ADTs so far have stored primitive types.

eg. block implementation of a queue from Section 5

public class QueueCharBlock {

private char[] items;

private int first, last;

public char dequeue() throws Underflow {

if (!isEmpty()) {

char a = items[first];

first++;

return a;

}

...

This queue will only work for characters. We would need to
write another for integers, another for a queue of strings,
another for a queue of queues, and so on.

Far better would be to write a single queue that worked for
any type of object.

In object-oriented languages such as Java this is easy,
providing we recall a few object-oriented programming
concepts from Section 2.4

— inheritance, casting, and wrappers.

8.1.1 Objects in the ADTs

The easiest part is changing the ADT. (The more subtle part
is using it.)

Recall that:

• every class is a subclass of the class Object

• a variable of a particular class can hold an instance of
any subclass of that class

This means that if we define our ADTs to hold things of type
Object they can be used with objects from any other class!

/**

* Block representation of a queue (of objects).

*/

public class QueueBlock {

private Object[] items; // array of Objects

private int first;

private int last;

public Object dequeue() throws Underflow { // returns an Object

if (!isEmpty()) {

Object a = items[first];

first++;

return a;

}

else throw new Underflow("dequeuing from empty queue");

}

8.1.2 Wrappers

The above queue is able to hold any type of object — that is,
an instance of any subclass of the class Object. (More
accurately, it can hold any reference type.)

But there are some commonly used things that are not
objects — the primitive types.

In order to use the queue with primitive types, they must be
“wrapped” in an object.

Recall from Section 2.4 that Java provides wrapper classes
for all primitive types.

Autoboxing — Note for Java 1.5

Java 1.5 provides autoboxing and auto-unboxing. Effectively
acts as automatic wrapping and unwrapping.

Integer i = 5;

int j = i;

However:

• Not a change to the underlying language — the compiler
recognises the mismatch and substitutes code for you:

Integer i = Integer.valueOf(5)

int j = i.intValue();

• Can lead to unintuitive behaviour. Eg:
Long w1 = 1000L;

Long w2 = 1000L;

if (w1 == w2) {

// do something

}

may not work. Why?

• Can be slow. Eg. if a, b, c, d are Integers, then
d = a * b + c

becomes
d.valueOf(a.intValue() * b.intValue() + c.intValue())

For more discussion see:

http://chaoticjava.com/posts/autoboxing-tips/

8.1.3 Casting

Recall that in Java we can assign “up” the hierarchy — a
variable of some class (which we call its reference) can be
assigned an object whose reference is a subclass.

However the converse is not true — a subclass variable
cannot be assigned an object whose reference is a
superclass, even if that object is a subclass object.

In order to assign back down the hierarchy, we must use
casting.

This issue occurs more subtly when using ADTs. Recall our
implementation of a queue. . .

public class QueueBlock {

private Object[] items; // array of Objects

...

public Object dequeue() throws Underflow { // returns an Object

if (!isEmpty()) {

Object a = items[first];

first++;

return a;

}

else...

Consider the calling program:

QueueBlock q = new QueueBlock();

String s = ‘‘OK, I’m going in!’’;

q.enqueue(s); // put it in the queue

s = q.dequeue(); // get it back off ???

The last statement fails. Why?

The queue holds Objects. Since String is a subclass of
Object, the queue can hold a String, but its reference in the
queue is Object. (Specifically, it is an element of an array of
Objects.)

dequeue() then returns the “String” with reference Object.

The last statement therefore asks for something with
reference Object (the superclass) to be assigned to a
variable with reference String (the subclass), which is
illegal.

We have to cast the Object back “down” the hierarchy:

s = (String) q.dequeue(); // correct way to dequeue

Generics — Note for Java 1.5

Java 1.5 provides an alternative approach. Generics allow
you to specify the type of a collection class:

Stack<String> ss = new Stack<String>();

String s = ‘‘OK, I’m going in!’’;

ss.push(s);

s = ss.pop()

Like autoboxing, generics are handled by compiler rewrites
— the compiler checks that the type is correct, and
substitutes code to do the cast for you.

Generics in Java are complex and are the subject of
considerable debate.

Some interesting articles:

http://www-128.ibm.com/developerworks/java/library/

j-jtp01255.html

http://weblogs.java.net/blog/arnold/archive/2005/06/

generics_consid_1.html

8.2 Iterators

It is often necessary to traverse a collection — look at each
item in turn.

Example:

In Lab Exercise 4 you were asked to get characters out of a
basic LinkedListChar one at a time and print them on
separate lines. Doing this using the supplied methods
destroyed the list.

We now know this to be the behaviour of a Stack, which has
no public methods for accessing items other than the top
one.

Example:

In Chapter 3 we developed the simple linked list class. In
order to print out the items in the list (without destroying it)
we provided the following toString method:

public String toString () {

LinkChar cursor = first;

String s = "";

while (cursor != null) {

s = s + cursor.item;

cursor = cursor.successor;

}

return s;

}

}

This is not a generic approach. If we wanted to look at the
items for another purpose — say to print on separate lines,
or search for a particular item — we would have to write
another method using another loop to do that.

A more standard, generic approach is to use an iterator.

An iterator is a companion class to a collection (known as
the iterator’s backing collection), for traversing the collection
(ie examining the items one at a time).

An iterator uses standard methods for traversing the items,
independently of the backing collection. In Java these
methods are specified by the Iterator interface in java.util.

These are:

• boolean hasNext() — return true if the iterator has
more items

• Object next() — if there is a next item, return that item
and advance to the next position, otherwise throw an
exception

• void remove() — remove from the underlying collection
the last item returned by the iterator. Throws an
exception if the immediately preceding operation was
not next.

Note: some iterators do not provide this method, and
throw an UnsupportedOperationException (arguably a
poor use of interfaces).

The underlying collection must also have a method for
“spawning” a new iterator over that collection. In Java’s
Collection interface this method is called iterator.

8.2.1 Using an Iterator

public static void main(String[] args) {

Queue q = new QueueCyclic();

q.enqueue(Character(’p’));

q.enqueue(Character(’a’));

q.enqueue(Character(’v’));

q.enqueue(Character(’o’));

Iterator it = q.iterator();

while(it.hasNext())

System.out.println(it.next());

}

8.2.2 Implemention — backing queue

import java.util.Iterator;

public class QueueCyclic implements Queue {

Object[] items; // package access for

int first, last; // companion class

public QueueCyclic (int size) {

items = new Object[size+1];

first = 0;

last = size;

}

public Iterator iterator() {

return new BasicQueueIterator(this);

}

...

8.2.3 Implemention — iterator

import java.util.Iterator;

class BasicQueueIterator implements Iterator {

private Queue backingQ;

private int current;

BasicQueueIterator(Queue q) {

backingQ = q;

current = backingQ.first;

}

public boolean hasNext () {

return !backingQ.isEmpty() &&

((backingQ.last >= backingQ.first && current <= backingQ.last) ||

(backingQ.last < backingQ.first &&

(current >= backingQ.first || current <= backingQ.last)))

}

public Object next () {

if (!hasNext())

throw new NoSuchElementException("No more elements.");

else {

Object temp = backingQ.items[current];

current = (current+1)%backingQ.items.length;

return temp;

}

}

public void remove () {

throw new UnsupportedOperationException

("Cannot remove from within queue.");

}

}

8.2.4 Fail-fast Iterators

Problem: What happens if backing collection changes
during use of an iterator?

eg. multiple iterators that implement remove

⇒ can lead to erroneous return data, or exceptions (eg
null pointer exception)

One Solution: Disallow further use of iterator (throw
exception) when an unexpected change to backing collection
has occurred — fail-fast method

Changes to backing collection. . .

public class QueueCyclic implements Queue {

Object[] items;

int first, last;

int modCount; // number of times modified

public void enqueue (Object a) {

if (!isFull()) {

last = (last + 1) % items.length;

items[last] = a;

modCount++;

}

else throw new Overflow("enqueuing to full queue");

}

...

Changes to iterator. . .

class BasicQueueIterator implements Iterator {

private Queue backingQ;

private int current;

private int expectedModCount;

public Object next () {

if (backingQ.modCount != expectedModCount)

throw new ConcurrentModificationException();

if (!hasNext())

throw new NoSuchElementException("No more elements.");

else {

Object temp = backingQ.items[current];

currentIndex = (current+1)%backingQ.items.length;

return temp;

}

}

8.3 Inner Classes

From a software engineering point-of-view the way we have
implemented our iterator is not ideal:

• private variables of QueueCyclic were given “package”
access so they could be accessed from
BasicQueueIterator — now they can be accessed from
elsewhere too

• BasicQueueIterator is only designed to operate
correctly with QueueCyclic (implementation-specific) but
there is nothing preventing applications trying to use it
with other implementations

Later versions of Java provide a tidier way. . . inner classes.

Inner classes are declared within a class:

public class MyClass {

// fields

// methods

private class MyInnerClass {

// fields

// methods

}

...

}

Cyclic queue implementation using an inner class. . .

import java.util.Iterator;

public class QueueCyclic implements Queue {

private Object[] items; // private again

private int first, last; //

...

public Iterator iterator() {

return new BasicQueueIterator(); // no "this"

}

private class BasicQueueIterator implements Iterator {

private int current;

// no need to store backing queue

private BasicQueueIterator() { // only constructed in outer class

current = first; // variable accessed directly

} // no passing of backing queue

public boolean hasNext () {

return !isEmpty() && // methods & variables

((last >= first && current <= last) || // accessed directly

(last < first && (current >= first || current <= last)))

}

} // end of inner class

} // end of QueueCyclic

Q: What other structures have we seen where the use of
inner classes would be appropriate?

