
CITS4009
Introduction to Data

Science
 SEMESTER 2, 2017: PART 2 MODELLING METHODS

CHAPTER 6 MEMORIZATION METHODS

1

School of Computer Science and Software Engineering

Chapter Objectives
• Building single-variable models

• Cross-validated variable selection

• Building basic multivariable models.

• Starting with decision trees, nearest neighbor, and naive
Bayes models.

2

Introduction
• memorization methods are methods that generate answers by returning a majority category

(in the case of classification) or average value (in the case of scoring) of a subset of the
original training data.

• These methods can vary from models depending on a single variable (similar to the analyst’s
pivot table), to decision trees (similar to what are called business rules), to nearest neighbour
and Naive Bayes methods.

• In this chapter, you’ll learn how to use these memorization methods to solve classification
problems (though the same techniques also work for scoring problems).

KDD and KDD Cup 2009
• Every year KDD hosts a data mining cup, where teams analyze a dataset and then are ranked

against each other. The KDD Cup is a huge deal and the inspiration for the famous Netflix Prize
and even Kaggle competitions.

• The KDD Cup 2009 provided a dataset about customer relationship management.
• The contest supplied 230 facts about 50,000 credit card accounts.
• From these features, the goal was to predict account cancellation (called churn), the innate

tendency to use new products and services (called appetency), and willingness to respond
favorably to marketing pitches (called upselling)

• We have the advantage that the data is already in a ready-to-model format (all input variables and
the results arranged in single rows). But we don’t know the meaning of any variable (so we can’t
merge in outside data sources), and we can’t use any method that treats time and repetition of
events carefully (such as time series methods or survival analysis).

• To simulate the data science processes, we’ll assume that we can use any column we’re given to
make predictions (that all of these columns are known prior to needing a prediction [3]), the
contest metric (AUC) is the correct one, and the AUC of the top contestant is a good Bayes rate
estimate (telling us when to stop tuning).

blob:chrome-extension://ojhbgcchcbdjdenibfmjofobklkkhofc/fd321af3-bc15-4ff2-bd4a-9491bfe6c411#ch06fn03

The worst possible
modelling outcome

• The worst possible modelling outcome is not failing to find a good model.

• The worst possible modelling outcome is thinking you have a good model when you don’t.

• One of the easiest ways to accidentally build such a deficient model is to have an instrumental
or independent variable that is in fact a subtle function of the outcome.

• The point is this: such variables won’t actually be available in a real deployment and often are
in training data packaged up by others.

Getting started with KDD
Cup 2009 data

• Try to predict churn in the KDD dataset.

• The KDD contest was judged in terms of AUC (area under the curve, a measure of prediction quality
discussed in chapter 5), so we’ll also use AUC as our measure of performance.

• The winning team achieved an AUC of 0.76 on churn, so we’ll treat that as our upper bound on
possible performance. Our lower bound on performance is an AUC of 0.5, as this is the performance
of a useless model.

• This problem has a large number of variables, many of which have a large number of possible levels.

• We’re also using the AUC measure, which isn’t particularly resistant to overfitting (not having built-in
model complexity or chance corrections).

• Because of this concern, we’ll split our data into three sets: training, calibration, and test.

• The intent of the three-way split is this:
 we’ll use the training set for most of our work,
 and we’ll never look at the test set (we’ll reserve it for our final report of model performance).

Getting started- Cont.
• Steps like calibration and cross-validation

estimates be performed by repeatedly splitting
the training portion of the data (allowing for
more efficient estimation than a single split,
and keeping the test data completely out of
the modelling efort).

• For simplicity in this example, we’ll split the
training portion of our data into training and
calibration only a single time.

• It’s often an excellent idea to first work on a
small subset of your training data, so that it
takes seconds to debug your code instead of
minutes.

Preparing the KDD data for analysis

Building single-variable
models
• Single-variable models are simply models built using only one

variable at a time.

• Single-variable models can be powerful tools, so it’s worth
learning how to work well with them before jumping into
general modelling (which almost always means multiple variable
models).

• You can build single-variable models from both categorical and
numeric variables.

Using categorical features
• A single-variable model based on categorical features is easiest to describe as a table.

• a pivot table (which promotes values or levels of a feature to be families of new columns) and statisticians
use what’s called a contingency table (where each possibility is given a column name).

• Churn rates grouped by variable 218 codes:

• This summary tells us that when variable 218 takes on
 a value of cJvF, around 6% of the customers churn; when it’s UYBR, 8% of the customers churn; and when it’s
not recorded (NA), 27% of the customers churn. The utility of any variable level is a combination of how often
the level occurs (rare levels aren’t very useful) and how extreme the distribution of the outcome is for records
matching a given level.

Plotting churn grouped by variable 218 levels

• Variable 218 seems like a feature that’s easy to use and helpful with prediction. In real work,
we’d want to research with our business partners why it has missing values and what’s the
best thing to do when values are missing (this will depend on how the data was prepared).

• We also need to design a strategy for what to do if a new level not seen during training were
to occur during model use.

• Since this is a contest problem with no available project partners, we’ll build a function that
converts NA to a level (as it seems to be prety informative) and also treats novel values as
uninformative. Our function to convert a categorical variable into a single model prediction is
shown here:

• Placing all of the steps in a function lets us apply the technique to many variables quickly.

• The dataset we’re working with has 38 categorical variables, many of which are almost
always NA, and many of which have over 10,000 distinct levels.

• So we definitely want to automate working with these variables as we have.

• Our first automated step is to adjoin a prediction or forecast (in this case, the predicted
probability of churning) for each categorical variable, as shown here:

for(v in catVars) {
pi < paste('pred',v,sep='')
 dTrain[,pi] <mkPredC(dTrain[,outcome],dTrain[,v],dTrain[,v])
dCal[,pi] < mkPredC(dTrain[,outcome],dTrain[,v],dCal[,v])
dTest[,pi] < mkPredC(dTrain[,outcome],dTrain[,v],dTest[,v])
 }

• Note that in all cases we train with the training data frame and then apply to all three data
frames dTrain, dCal, and dTest.

• We’re using an extra calibration data frame (dCal) because we have so many categorical
variables that have a very large number of levels and are subject to overfitting.

• Once we have the predictions, we can find the categorical variables that have a good AUC both
on the training data and on the calibration data not used during training.

Scoring categorical variables by AUC:
library('ROCR')

> calcAUC < function(predcol,outcol) {

 perf < performance(prediction(predcol,outcol==pos),'auc') as.numeric(perf@y.values)

}

 > for(v in catVars) {

 pi < paste('pred',v,sep=‘ ')

aucTrain < calcAUC(dTrain[,pi],dTrain[,outcome]) if(aucTrain>=0.8) {

 aucCal < calcAUC(dCal[,pi],dCal[,outcome])

print(sprintf("%s, trainAUC: %4.3f calibrationAUC: %4.3f", pi,aucTrain,aucCal))

 }

 }

[1] "predVar200, trainAUC: 0.828 calibrationAUC: 0.527“

[1] "predVar202, trainAUC: 0.829 calibrationAUC: 0.522"

[1] "predVar214, trainAUC: 0.828 calibrationAUC: 0.527"

[1] "predVar217, trainAUC: 0.898 calibrationAUC: 0.553"

 Using numeric features
• There are a number of ways to use a numeric feature to make

predictions.

• A common method is to bin the numeric feature into a number of
ranges and then use the range labels as a new categorical variable.

• R can do this quickly with
its quantile() and cut() commands.

>mkPredN < function(outCol,varCol,appCol) {
cuts < unique(as.numeric(quantile(varCol, probs=seq(0, 1, 0.1),na.rm=T)))
varC < cut(varCol,cuts)
appC < cut(appCol,cuts) mkPredC(outCol,varC,appC)

 }
>for(v in numericVars) {
>pi < paste('pred',v,sep='')
dTrain[,pi] < mkPredN(dTrain[,outcome],dTrain[,v],dTrain[,v])
dTest[,pi] < mkPredN(dTrain[,outcome],dTrain[,v],dTest[,v])
dCal[,pi] < mkPredN(dTrain[,outcome],dTrain[,v],dCal[,v])
aucTrain < calcAUC(dTrain[,pi],dTrain[,outcome])

if(aucTrain>=0.55) {
 aucCal < calcAUC(dCal[,pi],dCal[,outcome])

print(sprintf("%s, trainAUC: %4.3f calibrationAUC: %4.3f", pi,aucTrain,aucCal))
}

 }
[1] "predVar6, trainAUC: 0.557 calibrationAUC: 0.554"
[1] "predVar7, trainAUC: 0.555 calibrationAUC: 0.565“
[1] "predVar13, trainAUC: 0.568 calibrationAUC: 0.553"
[1] "predVar73, trainAUC: 0.608 calibrationAUC: 0.616"
[1] "predVar74, trainAUC: 0.574 calibrationAUC: 0.566“
[1] "predVar81, trainAUC: 0.558 calibrationAUC: 0.542"
[1] "predVar113, trainAUC: 0.557 calibrationAUC: 0.567"
[1] "predVar126, trainAUC: 0.635 calibrationAUC: 0.629"
[1] "predVar140, trainAUC: 0.561 calibrationAUC: 0.560"
[1] "predVar189, trainAUC: 0.574 calibrationAUC: 0.599"

• Notice in this case the numeric variables behave similarly on the
training and calibration data.

• This is because our prediction method converts numeric variables
into categorical variables with around 10 well-distributed levels,
so our training estimate tends to be good and not overfit.

• We could improve our numeric estimate by interpolating
between quantiles.

• Other methods we could’ve used are kernel-based density
estimation and parametric fitting.

• Both of these methods are usually available in the variable
treatment steps of Naive Bayes classifiers.

• Good way to visualize the predictive power of a numeric
variable is the double density plot, where we plot on the
same graph the variable score distribution for positive
examples and variable score distribution of negative
examples as two groups.

• The figure here shows the performance of the single-
variable model built from the numeric feature Var126.

• It is showing the conditional distribution
of predVar126 for churning accounts (the dashed-line
density plot) and the distribution of predVar126 for non-
churning accounts (the solid-line density plot).

• We can deduce that low values of predVar126 are rare
for churning accounts and not as rare for non-churning
accounts (the graph is read by comparing areas under the
curves).

• This (by Bayes law) lets us in turn say that a low value
of predVar126 is good evidence that an account will not
churn.

Dealing with missing values
in numeric variables
• First, for each numeric variable, introduce a new advisory

variable that is 1 when the original variable had a missing value
and 0 otherwise.

• Second, replace all missing values of the original variable with 0.

• You now have removed all of the missing values and have
recorded enough details so that missing values aren’t confused
with actual zero values.

Using cross-validation to
estimate effects of overfitting
• cross-validation used to estimate the degree of overfit we have

hidden in our models.

• Cross-validation applies in all modelling situations.

• In repeated cross-validation, a subset of the training data is used to
build a model, and a complementary subset of the training data is
used to score the model.

Running a repeated cross-validation
 experiment

Cross-validation
• In many other circumstances, estimations from a single

calibration set are good enough.

• And in extreme cases (such as fitting models with very many
variables or level values), you’re well advised to use replicated
cross-validation estimates of variable utilities and model fits.

• Automatic cross-validation is extremely useful in all modelling
situations, so it’s critical you automate your modelling steps so
you can perform cross-validation studies.

Aside: cross-validation in
functional notation

• for(){} loops are considered an undesirable crutch in R.

• We used a for loop in our cross-validation example, as this is the style of programming that is likely to be most
familiar to nonspecialists.

• The point is that for loops over-specify computation (they describe both what you want and the exact order of
steps to achieve it).

• For loops tend to be less reusable and less composable than other computational methods.

• When you become proficient in R, you look to eliminate for loops from your code and use either vectorized or
functional methods where appropriate.

• Function arguments in R are not evaluated prior to being passed in to a function, but instead are evaluated inside
the function.

• This is called promise-based argument evaluation and is powerful (it allows user-defined macros, lazy evaluation,
placement of variable names on plots, user-defined control structures, and user-defined exceptions).

• This can also be complicated, so it’s best to think of R as having mostly call-by-value semantics, where arguments
are passed to functions as values evaluated prior to entering the function and alterations of these values aren’t
seen outside of the function.

Building models using many
variables
• Models that combine the efects of many variables

tend to be much more powerful than models that use
only a single variable.

• The most fundamental multiple-variable models:
1. Decision trees,
2. Nearest neighbour,
3. Naive Bayes.

Variable selection
• A key part of building many variable models is selecting what variables[6] to use and how the

variables are to be transformed or treated.

• When variables are available has a huge impact on model utility.

• For instance, a variable that’s coincident with (available near or even after) the time that
the outcome occurs may make a very accurate model with litle utility (as it can’t be used
for long-range prediction).

• The analyst has to watch out for variables that are functions of or “contaminated by” the
value to be predicted

• Sometimes you may want to improve model utility (at a possible cost of accuracy) by
removing variables from the project design.

• An acceptable prediction one day before an event can be much more useful than a more
accurate prediction one hour before the event.

blob:chrome-extension://ojhbgcchcbdjdenibfmjofobklkkhofc/fd321af3-bc15-4ff2-bd4a-9491bfe6c411#ch06fn06

Using decision trees
• Decision trees are a simple model type: they make a prediction that is

piecewise constant.

• This is interesting because the null hypothesis that we’re trying to outperform
is often a single constant for the whole dataset, so we can view a decision tree
as a procedure to split the training data into pieces and use a simple
memorized constant on each piece.

• Decision trees (especially a type called classification and regression trees,
or CART) can be used to quickly predict either categorical or numeric
outcomes.

• The best way to grasp the concept of decision trees is to think of them as
machine-generated business rules.

Fitting a decision tree model
• Building a decision tree involves proposing many possible data cuts and then choosing best cuts

based on simultaneous competing criteria of predictive power, cross-validation strength, and
interaction with other chosen cuts.

• One of the advantages of using a canned package for decision tree work is not having to worry
about tree construction details.

• To build a decision tree:

• Call rpart() is to just give it a list of variables and see what happens (rpart(), unlike many
R modelling techniques, has built-in code for dealing with missing values).

• There are chances of building bad decision tree when we have a complicated model, categorical
variables with very many levels, and have a lot more NAs/missing data.

• To improve the tree try to control rpart() model complexity, we need to monkey a bit with
the controls. We pass in an extra argument, rpart.control()

How decision tree models
work

• Node 1 called Root

• Each node other than the root node has a parent,

• The parent of node k is node floor(k/2).

• A node with no children, which is called a leaf node (marked with stars)

• The remaining three numbers reported for each node are the number of
training items that navigated to the node, the deviance of the set of training
items that navigated to the node (a measure of how much uncertainty
remains at a given decision tree node), and the fraction of items that were in
the positive class at the node (which is the prediction for leaf nodes).

Decision tree
>print(tmodel)
n= 40518
 node), split, n, deviance, yval
 * denotes terminal node
1) root 40518 2769.3550 0.07379436
2) predVar126< 0.07366888 18188
726.4097 0.04167583
4) predVar126< 0.04391312 8804
189.7251 0.02203544 *

Using nearest neighbour
methods

• A k-nearest neighbor (KNN) method scores an example by finding the k training examples nearest to the
example and then taking the average of their outcomes as the score.

• The notion of nearness is basic Euclidean distance, so it can be useful to select nonduplicate variables,
rescale variables, and orthogonalize variables.

• One problem with KNN is the nature of its concept space.

• For example, if we were to run a 3-nearest neighbour analysis on our data, we have to understand that with
three neighbours from the training data, we’ll always see either zero, one, two, or three examples of churn.

• For events with unbalanced outcomes (that is, probabilities not near 50%), we suggest using a large k so
KNN can express a useful range of probabilities.

• For a good k, we suggest trying something such that you have a good chance of seeing 10 positive
examples in each neighborhood (allowing your model to express rates smaller than your baseline rate to
some precision).

• KNN is expensive both in time and space. Sometimes we can get similar results with more efficient
methods such as logistic regression

Using Naive Bayes
• Naive Bayes is an interesting method that memorizes how each training variable is related to outcome, and then makes predictions

by multiplying together the efects of each variable.

• demonstrate this, let’s use a scenario in which we’re trying to predict whether somebody is employed based on their level of
education, their geographic region, and other variables.

• Naive Bayes begins by reversing that logic and asking this question: Given that you are employed, what is the probability that you
have a high school education? From that data, we can then make our prediction regarding employment.

• Suppose we define our evidence (ev_1) as the predicate education=="High School", which is true when the
variable x_1 (education) takes on the value X_1 ("High School").

• Let’s call the outcome y (taking on values T or True if the person is employed and F otherwise).

• Then the fraction of all positive examples where ev_1 is true is an approximation to the conditional probability of ev_1,
given y==T. This is usually writen as P(ev1|y==T).

• But what we want to estimate is the conditional probability of a subject being employed, given that they have a high school
education: P(y==T|ev1).

• How do we get from P(ev1|y==T) (the quantities we know from our training data) to an estimate of P(y==T|ev1 ...
evN) (what we want to predict)?

 Bayes’ law tells us we can expand P(y==T|ev1) and P(y==F|ev1) like this:

 The left-hand side is what you want; the right-hand side is all quantities that can be estimated from the statistics of
the training data. For a single feature ev1, this buys us litle as we could derive P(y==T|ev1) as easily from our
training data as from P(ev1|y==T). For multiple features (ev1 ... evN) this sort of expansion is useful. The Naive
Bayes assumption lets us assume that all the evidence is conditionally independent of each other for a given
outcome:

 P(ev1&. . . evN | y==T) ≈ P(ev1 | y==T) × P(ev2 | y==T) × . . . P(evN | y==T)

 P(ev1&. . . evN | y==F) ≈ P(ev1 | y==F) × P(ev2 | y==F) × . . . P(evN | y==F)

 This gives us the following:

 The numerator terms of the right sides of the final expressions can be calculated efficiently from the training data,
while the left sides can’t. We don’t have a direct scheme for estimating the denominators in the Naive Bayes
expression (these are called the joint probability of the evidence).

 Building, applying, and evaluating a
Naive Bayes model

Smoothing
• Most important design parameter in Naive Bayes is how smoothing is handled.

• The idea of smoothing is an atempt to obey Cromwell’s rule that no probability estimate
of 0 should ever be used in probabilistic reasoning.

• This is because if you’re combining probabilities by multiplication (the most common
method of combining probability estimates), then once some term is 0, the entire
estimate will be 0 no matter what the values of the other terms are.

• The most common form of smoothing is called Laplace smoothing, which
counts k successes out of n trials as a success ratio of (k+1)/(n+1) and not as a
ratio of k/n (defending against the k=0 case).

• Frequentist statisticians think of smoothing as a form of regularization and Bayesian
statisticians think of smoothing in terms of priors.

Document classification and
Naive Bayes
• Naive Bayes is the workhorse method when classifying text documents.

• This is because the standard model for text documents (usually called bag-
of-words or bag-of-k-grams) can have an extreme number of possible
features.

• In the bag-of-k-grams model, we pick a small k (typically 2) and each
possible consecutive sequence of k words is a possible feature.

• Each document is represented as a bag, which is a sparse ector indicating
which k-grams are in the document.

• The number of possible features runs into the millions, but each document
only has a non-zero value on a number of features proportional to k times
the size of the document.

Key Takeaways
• Always try single-variable models before trying more complicated

techniques.

• Single-variable modelling techniques give you a useful start on variable
selection.

• Always compare your model performance to the performance of your
best single-variable model.

• Consider decision trees, nearest neighbour, and naive Bayes models as
basic data memorization techniques and, if appropriate, try them early
in your projects.

33

	Slide 1
	Chapter Objectives
	Introduction
	KDD and KDD Cup 2009
	The worst possible modelling outcome
	Getting started with KDD Cup 2009 data
	Getting started- Cont.
	Building single-variable models
	Using categorical features
	Slide 10
	Slide 11
	Slide 12
	 Using numeric features
	Slide 14
	Slide 15
	Slide 16
	Dealing with missing values in numeric variables
	Using cross-validation to estimate effects of overfitting
	Cross-validation
	Aside: cross-validation in functional notation
	Building models using many variables
	Variable selection
	Using decision trees
	Fitting a decision tree model
	How decision tree models work
	Decision tree
	Using nearest neighbour methods
	Using Naive Bayes
	Slide 29
	Slide 30
	Smoothing
	Document classification and Naive Bayes
	Key Takeaways

