
Topic 15: Deploying
the Application
CITS3403/5505 Agile Web Development

Semester 1, 2023The Flask Mega-Tutorial
Miguel Grinberg
Chapters 17 and 18

• In this unit we have gone through the process of building a web
application, and deploying it via the computers local host.

• However, web applications work best on the web, so in this
lecture we’ll go through some options for deploying the application
via a url accessible world wide.

• We will consider deploying via a linux virtual machine, your own
server, or Heroku.

Deploying the project

• A linux server is the traditional way of deploying
a web application.

• The server runs applications listening to ports for
requests and serves those requests.

• As most people don’t want to worry about the
physical infrastructure they use hosting
solutions.

• Amazon, Digital Ocean, A2, Azure, AliBaba all
offer hosted virtual machines that you can rent
for about $5 a month.

• Typically, you register an account and request
an instance. You have a user account with login
details, that allows you to ssh to the virtual
machine and configure and deploy your
application from the command line.

A linux virtual machine

• It’s sensible to be reasonably paranoid when using a publicly
accessible machine.

• Steps taken to secure to server are:
l Removing passwords for login, and use key files instead. You can

generate a public-private key pairing that is stored in your
personal machine.

l Disabling root logins. Someone with root user credentials will have
complete access to your server.

l Using a firewall to only accept traffic on ports 22 (ssh) 80 (http)
and 443 (https). People will scan open ports for any vulnerabilities.

l Routing all web requests through https. Http traffic is transmitted
in plaintext, and is visible to intermediate nodes.

Securing a web-server

• Flask uses it’s own web-server
and sqlite to allow fast and simple
development.

• However these don’t scale well
either in terms of security, or
handling many requests.

• As we have been using SQL-
Alchemy, we will look at the
databases mysql or PostgreSQL.

• We will use gunicorn as a web
server to run the flask app, and
nginx as the outward facing proxy
server (Apache is an alternative
to nginx).

Production grade tools

• We can install mysql on our web server using
apt-get (a linux package manager).

• We open mysql and create a special user to
handle the database transactions.

• Set the username to your app name, and
insert an appropriate password.

• We need to install a driver for mysql, and then
set the DATABASE_URL to the new database.

• As Flask automatically reads the
DATABASE_URL variable we can simply run
flask db migrate and flask db upgrade to
create the database.

• Now the app will work as before, but we now
have a full database server.

Running mysql on the web server.

• The Flask webserver is a lightweight server used for rapid
prototyping.

• Web Service Gateway Interface is a python standard for accessing
web-requests, and is implemented in Gunicorn (install with pip)

• For dealing with external traffic and serving static content, we will
use nginx as a proxy server (install with apt-get)

• We will also use a supervisor to restart these services when the
server restarts (install with apt-get)

A better webserver.

• NGINX is the external facing
web server. It does several
things:

l It routes all traffic through https
(port 443) so it is encrypted.

l It caches any static data served,
to improve efficiency.

l It includes public-key encryption,
using a secure certificate.

l Certificates can be generated
locally, or you can get an
externally signed one from
LetsEncrypt.org.

l This requires a domain name for
your server.

Configuring NGINX

• When we deploy the website, with the command sudo nginx
reload (or sudo nginx start) the server will listen for
requests on port 80 and forward them through port 443 so they
are encrypted end to end.

• This uses the public key registered with the certificate authority,
and the private key to decrypt traffic. The client uses the public
key to encrypt traffic, but has to have confidence in the identity of
the origin of the public key, which is why a 3rd party is required.

Deploying the website

• The servers run in a
daemon thread so they
persist after the session
has ended (i.e. you log
out).

• In the past running your own server would have been an
expensive proposition.

• It is now much cheaper, using a wireless router and home
broadband connection and raspberry pi, or similar small computer.

• A raspberry pi is a single board computer costing less than $60,
with 1GB Memory and 1.4 Ghz processor. This is easily enough to
power a small web server.

• Raspberry Pi’s come with a variation of linux (Raspbian) and can
be configured in the same way as the linux servers we have
discussed.

Running your own server

• You normally need a keyboard and
monitor to configure the raspberry pi,
but once you have it on your home
network, you can use ssh and treat it
like any normal linux server.

• You can connect a raspberry
pi (or any computer) to a
wireless router, and then
acces the administrator
interface of the router.

• Using that you can open ports
to the computer (80, 23 and
443 are usually enough), and
then access the application via
the ip address of the router.

Deploying to raspbery pi

• When creating software such as
a web app, there can be issues
with versioning, package
management and cross-platform
reliability

• Solution: put your web app in it’s
own little transportable box that
stays the same no matter what

• This is basically a container
• Containers standardise the

software you’ve written, along
with all of the dependencies, so it
runs the same from one
environment to another

Containerising your web app

[1] https://www.msystechnologies.com/blog/a-complete-guide-to-cloud-containers/

An example of a container stack: anything
above is bundled into the container, to be run

on the Host OS and deployed on the server [1]

• Docker made your favourite
containers favourite container

• Docker software includes
functionality to create Docker
container images, as well as the
Docker Engine as a run
environment

• These container images are run
on the Docker Engine, and no
matter what the environment is
the app will be the same

• Docker has different tiers of
containers depending on your
needs (security, space etc.)

Docker: Easy way to create containers

https://www.docker.com/

• Docker (as a program) can create
an image automatically from a
script called a Dockerfile

• Each project can contain multiple
files (depending on environments
such as development and
production), and these files are
basically a script to create the
container

• `docker build’ can run this script,
and the container will be created

• For further information on
Dockerfile scripts and best
practices, go here

Dockerfiles

Dockerfile from a deployed Flask project

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

• When deploying apps (especially
in less-mature / early stage
projects), it’s easiest at time of
writing to use the cloud

• There exist many Platform-as-a-
Service (PaaS) products, largely
doing away with having to set up
a server, manage storage and
maintain infrastructure

• There are almost always pay to
play and scale with playtime, but
almost all have free or hobby
tiers

• They also often are limited to
different OS / languages

There are many services available: the choice
is an individual one, but we’ve been using

Heroku the longest so we’ll be using that for
demonstration. At time of writing HN hates

Heroku and espouses Fly.io

Hosting web apps on the world wide web

• Heroku is a cloud platform that
you can upload your (ideally
containerised) app to

• You can then use built-in
functionality to build, maintain
and scale your project

• Popular as very easy to use: you
basically commit and push your
project to the host URL like you
would a Git repo

• Free tier (hobby dev), but can get
expensive quite quickly

• Still probably the most popular /
recognised even though
reputation for being expensive

Heroku: A heroic haiku owned by Salesforce

https://www.heroku.com/what

• To launch your app on Heroku, you need a Heroku account (free),
and a git repository of your project.

• Once you register an account you should install Heroku CLI, a
command line interface that lets you set up and configure your
heroku instance from your local machine.

Setting up Heroku

• Build your app as usual, in a git repo.
• Heroku does not have persistant

memory, but offers free postgress
databases as a service, so we need to
include psycopg2, and gunicorn.

• Freeze the requirements and then create
the app. This initialises a git remote to
push our code to.

• As the Heroku container does not offer persistant memory, we
require an external database.

• We can use Heroku addons to add a postgresql database. If we
initialise it as hobby-dev, it was free, but apparently not anymore.

• When we request a database for our project, Heroku initialises it,
and sets DATABASE_URL in our project settings to point to it, so we
don’t have to do anything expect migrate our database structure.

• There are many other Database As A Service providers we could
use: MLab for mongo databases, Azure and AWS offer every type of
database as a service.

Database as a service

• Given we went through many steps to set up
the Flask environment on our local machine
deploying to Heroku is surprisingly easy.

• We set any system variables we need (in this
case FLASK_APP), and Heroku has already
set others we require (DATABASE_URL and
PORT)

• We give it the basic commands to run on
initilaisation in a Procfile, that is stored in
the root of our git repo.

• To launch the app we just push our git remote
to the remote that was created with the
project. Heroku will detect what language we
are using (python), install python, pip and all
our requirements from reuqirements.txt, and
then run the commands in the Procfile.

Deploying on Heroku

Full Deployment

• In this course we have tried to focus on the fundamental
technologies of the web: HTML, CSS, Javascript, and web
application frameworks, RESTful architectures, AJAX, Sockets.

• We have also looked at the agile software development process,
and key tools like git.

• While the core technologies such as REST, HTTP, and AJAX are
reasonably persistent, the web is a rapidly changing domain, with
many trends, and many new emerging technologies.

• What will the web look like in the future?

The future of the web

• As with deployment on Heroku… cloud services are everywhere.
• High bandwidth permanent online devices and the principles of

REST between the line between your personel device and a cloud
service is increasingly blurred.

• Interestingly cloud is blurring into desktop apps, such as word
processing, and the desktop SOE is disappearing.

• Many music/movie streaming services are changing the notion of
libaries and owning media entirely.

• Software as a service is a huge industry and many of the
emerging business models use this concept.

Cloud computing

Want to know more?
Study CITS5505, Cloud
Computing

• The internet of things is the extension of the internet to smart
devices. It focuses on the message passing interfaces and
infrastructure, rather than the end user interface.

• Smart homes, adaptive lighting, smart vehicles, and connected
devices all use basic web technologies for remote control.

• Similarly they are able to gather analytics and adapt to their usage
to improve user experience.

• But this has big implications for privacy: the web extends
seamlessly to our day to day life without us being conscious of it.

The Internet of Things

Want to know more?
Study CITS5506, Internet of Things

• Sir Tim Berners-Lee was one of the creators of the web in 1989, but
has for a long time been championing the semantic web.

• This highlights the difference between content and meaning.
Semantics is meaning. We use HTML and CSS to differentiate
content and presentation, but if we also have a standard for
meaning, then a smart search engine, can understand whether web
services are selling tickets, or promoting events, or documenting
history etc.

• ChatGPT4, Bard and others will have a huge impact as programs
and bots become able to “comprehend” and use the web.

Semantic web

Want to know more? Study:
CITS3001 Agents, Algorithms and
Artificial Intelligence;
CITS3005: Knowledge Representation;
CITS4012: Natural Language Processing

• Security is the ongoing challenge of
the web. The web has evolved and
wasn’t designed for security, so
securing services is a constant battle.

• The prevelance of the web means that
small flaws can have major
implications in defence and society
and cyberwarfare is consuming
significant defence spending.

• Big examples are the Stuxnet attacks
on Iran’s nuclear program, the Ashley
Madison hack, and Anonymous’s
attack on HB Gary.

Cyber-Security

Want to know more? Study:
CITS3004 Cybersecuritry;
CITS3005 Penetration Testing and
CITS3007 Secure Coding.

• This Exam is worth 50% of your final
grade and must be done individually.

• You will be given a 33 hour window to do
the test, but if you are prepared, it should
only take about 3-4 hours.

• You will be required to build a webpage,
demonstrating HTML, CSS and JS
coding, and presenting content relating
to the unit and your project.

• You may use GPT, CoPilot, or any
internet resources, but you may not
collaborate with anyone else.

• The exam will be released via the unit
webpage, and should be submitted by
cssubmit. Late submissions will not be
accepted.

• Good luck!

Final Take home test

