
Topic 15: 

Authentication
CITS3403 Agile Web Development

Semester 1, 2018Getting MEAN with Mongo, 

Express, Angular and Node, 

Chapter 11



• Security is a primary concern for anyone developing web 

applications.

• Data access must be controlled, passwords must be 

validated securely, and users just be able to trust the 

information presented to them.

• Complete security is very hard to achieve and beyond 

the scope of this unit, but basic authentication is 

relatively easy.

• An interesting case study of internet security is 

anonymous’ attack on HBGary:
arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack/

Secure web apps

http://arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack/


Web security makes use of the following basic 

concepts

• Public Key Encryption (eg RSA)
– A public-private key is 2 functions pub and priv so that x = priv(pub(x)) and given that 

you know pub, priv is hard to work out.

– Public Key Encryption can be used for authentication. I can compute and publish pub(x)

and only someone who knows priv can tell me what x is.

– Public Key Encryption can be used for digital signatures. The pair (x, priv(x)) can be 

verified by anyone, but only created by some who knows priv.

– Key distribution. A random key x can be generated and pub(x) can be sent to someone 

who knows priv. Then the pair knows x, but no body else does (even if they have been 

eaves dropping

• Hashing (eg MD5)
– Secure hashing computes a large number from a stream of data, in such a way that it’s 

very difficult to fabricate data with a certain hash.

– Different to hashing used for Hash tables etc.

Web security basics



• HTTP is stateless, so the 

server does not remember the 

client.

• For a secure session, every 

request needs to be 

authenticated... thankfully 

there are protocols to help 

here.

• SSL (secure sockets layer) 

wraps up the public key 

encryption process to enable 

a secure transaction.

Secure web session 



• Web session security is managed through cookies 

and tokens.

• Cookies are packets of data stored in the browser.
– Session cookies can record a users interaction with a site, persistent remain in your browser 

and allow sites to track your browsing habits.

– Cookies consist of a name, a value and a set of attribute value pairs (e.g. expiration).

– Cookies can be created and managed through javascript: document.cookie=“trackme: 

false”;

– Cookies are sent from the server to the browser:

Cookies and Tokens

• Authentication tokens allow you 

to store user privaleges in JWT, 

(JSON web tokens)



Authentication and session management

To manage users, a mongo collection can store user data and 

password hashes. Unverified users are required to enter login 

details before a secure session commences. 

There are a number of good tutorials for incorporating security 

into your app
• http://www.dotnetcurry.com/nodejs/1302/nodejs-token-based-authentication-

security

• http://thejackalofjavascript.com/architecting-a-restful-node-js-app/

http://www.dotnetcurry.com/nodejs/1302/nodejs-token-based-authentication-security
http://thejackalofjavascript.com/architecting-a-restful-node-js-app/


• There are some useful packages to handle 

authentication. Passport is a popular option with 

many strategies, including authentication through 

Google and Facebook.

• We’ll look at using the passport-local which stores 

the authentication details in a local mongo 

database.

• This is taken from the web tutorial 
http://mherman.org/blog/2015/01/31/local-authentication-with-passport-

and-express-4

Adding authentication to MEAN apps

http://mherman.org/blog/2015/01/31/local-authentication-with-passport-and-express-4


• Web security depends on trust. There are several 

elements to this:

1. The web server needs to be confident that 

someone accessing data is authorised.

2. The user needs to know that the site they are 

visiting is the one they intend to.

3. Both the server and the client need to be confident 

that no one in the middle is accessing unauthorised

data.

• 2 is typically handled by browsers, and 3 is 

achieved with https. We’ll focus on 1.

Elements of Web-security



• To track a users identity we need to have them 

register so we can associate a user name with 

them.

• When someone uses an application a session is 

maintained via a variable held by the web-browser.

• When someone logs in they provide a password. 

This is salted and hashed to provide a digest which 

can compared to a hash in a database (keeping the 

password secure).

• Once the user is authenticated, they will be be 

served there requested pages, and their id will be a 

parameter of the requests. 

Authentication Strategy



• Install the npom
packages: passport-

local, express-

session and 

passport-local-

mongoose

• In app.js we need to 

include and initialise

passport.

• The express-session 

stores data in the 

backend away from the 

user. 

Steps to implement security:



• We can create a account model using mongoose. 

Including passport-local-mogoose will take care of 

hashing and salting:

A model for user accounts:



• The login, register 

and index pages all 

require get and post 

actions so these 

need to be added to 

the routes.

• A controller should 

really be used to 

group the call-backs 

in a single js file

Adding Routes



• The Jade views can 

now be rendered 

differently depending 

on whether a user is 

logged in:

Jade views



• These can 

now be 

implemented 

as simple 

forms

Login and register pages



Front end:



• You can see how the account data is held via the 

Mongo Shell:

Mongo Backend



• Testing and Agile development….

Next lecture….


