WESTERN

e AUSTRALIA

Topic 15:
Authentication

CITS3403 Agile Web Development

Getting MEAN with Mongo, Semester 1, 2018
Express, Angular and Node,
Chapter 11

Secure web apps &4 AUSTRALIA

e Security Is a primary concern for anyone developing web
applications.

« Data access must be controlled, passwords must be
validated securely, and users just be able to trust the
Information presented to them.

« Complete security is very hard to achieve and beyond
the scope of this unit, but basic authentication is
relatively easy.

* An interesting case study of internet security Is
anonymous’ attack on HBGary:

arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack/

http://arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack/

Web security basics WAUSTRALIA

Web security makes use of the following basic
concepts

* Public Key Encryption (eg RSA)

A public-private key is 2 functions pub and priv so that x = priv(pub(x)) and given that
you know pub, priv is hard to work out.

— Public Key Encryption can be used for authentication. | can compute and publish pub(x)
and only someone who knows priv can tell me what x is.

— Public Key Encryption can be used for digital signatures. The pair (X, priv(x)) can be
verified by anyone, but only created by some who knows priv.

— Key distribution. A random key x can be generated and pub(x) can be sent to someone
who knows priv. Then the pair knows x, but no body else does (even if they have been
eaves dropping

« Hashing (eg MD5)

— Secure hashing computes a large number from a stream of data, in such a way that it's
very difficult to fabricate data with a certain hash.

— Different to hashing used for Hash tables etc.

Secure web session

HTTP Is stateless, so the
server does not remember the
client.

For a secure session, every
request needs to be
authenticated... thankfully
there are protocols to help
here.

SSL (secure sockets layer)
wraps up the public key
encryption process to enable
a secure transaction.

Client/Browser

THE UNIVERSITY OF

WESTERN
w AUSTRALIA

E=1

o

Server

F=¥==] THE UNIVERSITY OF

WESTERN

Cookies and Tokens & AUSTRALIA

Web session security iIs managed through cookies
and tokens.

Cookies are packets of data stored in the browser.

Authentication tokens allow you
to store user privaleges in JWT,
(JSON web tokens)

Session cookies can record a users interaction with a site, persistent remain in your browser
and allow sites to track your browsing habits.

Cookies consist of a name, a value and a set of attribute value pairs (e.g. expiration).

Cookies can be created and managed through javascript: document . cookie="trackme:
false”;

HTTP/1.0 200 OK
Content-type: text/html

Cookies are sent from the server to the browser: ... coocic: themestignt

Set-Cookie: sessionToken=abel23; Expires=wWed, 09 Jun 2021 10:18:14 GMT

Fregne] THE UNIVERSITY OF

. . N WESTERN
Authentication and session management %= AUSTRALIA

To manage users, a mongo collection can store user data and
password hashes. Unverified users are required to enter login
details before a secure session commences.

There are a number of good tutorials for incorporating security

Into your app
. http://www.dotnhetcurry.com/nodejs/1302/nodejs-token-based-authentication-

security
. http://thejackalofjavascript.com/architecting-a-restful-node-js-app/
—_ -
- 1 4

http://www.dotnetcurry.com/nodejs/1302/nodejs-token-based-authentication-security
http://thejackalofjavascript.com/architecting-a-restful-node-js-app/

. . WESTERN
Adding authentication to MEAN apps &4 AUSTRALIA

 There are some useful packages to handle
authentication. Passport is a popular option with
many strategies, including authentication through
Google and Facebook.

« We'll look at using the passport-local which stores
the authentication detalls in a local mongo
database.

 This is taken from the web tutorial

http://mherman.org/blog/2015/01/31/local-authentication-with-passport-
and-express-4

http://mherman.org/blog/2015/01/31/local-authentication-with-passport-and-express-4

Elements of Web-security &5 AUSTRALIA

 Web security depends on trust. There are several
elements to this:

1. The web server needs to be confident that
someone accessing data Is authorised.

2. The user needs to know that the site they are
visiting is the one they intend to.

3. Both the server and the client need to be confident
that no one in the middle is accessing unauthorised
data.

« 2 s typically handled by browsers, and 3 Is
achieved with https. We’'ll focus on 1.

N WESTERN
Authentication Strategy &5 AUSTRALIA
« To track a users identity we need to have them

register so we can associate a user name with
them.

 When someone uses an application a session is
maintained via a variable held by the web-browser.

 When someone logs in they provide a password.
This Is salted and hashed to provide a digest which
can compared to a hash in a database (keeping the
password secure).

* Once the user is authenticated, they will be be
served there requested pages, and their id will be a
parameter of the requests.

var express = require();

var path = regquire(|

var favicon = reguire();

var logger = reguire([

var cookieParser = require()i
var bodyParser = reguire(¥;

Steps to implement security:

var passport = require();
var LocalStrategy= require() .Strategy;

DD -~ O LN B ad R =t

Install the npom 1
paCkageS: paS SpOrt— :g var routes = reguire(|H

14 var users = require();

local, express-— 16 var app = express();
session and e .

19 app.set(» path.join(__dirname,
20 app.set(')

passport—local- 21
mongoose

4 app.use(logger());
25 app.use(bodyParser.json());
26 app.use(bodyParser.urlencoded({ extended: Hn;

In app.JS We need tO é; app.use(cookieParser());

. . . . 29 app.use(require(Y i{
iInclude and initialise % secrett CITSa],
t 32 savellninitialized:
33 N);
paSSpor ' 34 app.use(passport.initialize());
35 app.use(passport.session());

The expreSS'SeSSIOn gf app.use(express.static(path.join(__dirname, 11);
stores data in the 55 appse(/', routes);
backend away from the 12 var Aceount: o requirel .

2

43 passport.use{new LocalStrategy(Account.authenticate()));
4 passport.serializeUser(Account.serializeUser());

u S e r_ 45 passport.deserializelUser(Account.deserializelUser());

Fo=gn=y [HE UNIVERSITY OF

WESTERN

A model for user accounts: &4 AUSTRALIA

We can create a account model using mongoose.

Including passport-local-mogoose will take care of
hashing and salting:

1 §ar mongoose = require()i
' var Schema = mongoose.Schema;
, var passportLocalMongoose = require(

5 var Account = new Schema({
username: String,
password: 5tring
g

Lé Account.plugin(passportLocalMongoose);

12 module.exports = mongoose.model(

, Account);

Adding Routes

b
e OoOoONOOYDL A W

require get and post

~ 1
£9 J

router.get(

The login, register 2 roster. st
and index pages all EEee=

18 router.get(

);

actions so these 2 router: post

need to be addedto E
the routes.
A controller should

really be used to ;
group the call-backs Eg

e
34 i

10 router.post(

In a single js file

KL T

H

36 router.get(

);

H

47 }

router.get(

);

49 module.exports = router:

1 var express = require(');

var passport = require();
var Account = require(

var router = express.Router();
var ctrilPerson = require(

» ctrlPerson.personList);

, ctrlPerson.newPerson);

res. render(St

Account.
register(new Account({ username :
req.body.password,
function(err, account) {
if (err) {
return res.render(
}
passport.authenticate(
res.redirect('/');
};
H;

, function(req, res) {

, ctrlPerson.deletePerson);

, function(req, res) {

, function(req, res) {

);

H

req.body.username }),

» { account : account });

)(req, res, function () {

res.render(. 1 user : req.user });

res.redirect('/');

req. logout();
res.redirect('/');

, passport.authenticate(

, function(req, res) {

), function(req, res) {

B WD 00 =J O LN L Ll B =t

J

te

bloc
if

br
al

ade views

The Jade views can

now be rendered
differently depending
on whether a user Is
logged In:

nds layout

k content
({luser)
a(href="/1login") Login

href="/register") Register

if (user)
p You are currently logged in as #{user.username}
alhref="/logout") Logout

1 gxtends layout

00 =J &N LN B Ll P

block content

hl Simple

if (!user)
a(href="/1login") Login
br
alhref="/register") Register

if (user)
p You are currently logged in as #{user.username}
alhref="/1logout") Logout

mixin email(addr)
alhref="mailto://'+ addr)= addr

table
tr
th Name
th Age
th Email
th Delete?
each p in people
tr
td #{p.name}
td #{p.age}
td
= var e = p.email;
+email(e)
td
al(href="/delete/'+p._id) Delete

form(action="'/"', method='post')
label(for="name') Name
input(id = ‘name' , type='text', name='name')
label(for="'age') Age

input(id='age', type ='number', name='age')
label(for="'email') Email

input(id='email', type ='email', name='email')
input(type="'submit', value='Submit')

. . WESTERN
Login and register pages A& AUSTRALIA

tends layout

e These can
now be

block content

. container
] hl Login Page

Login to the simple app here.
Implemented p Log ple app
or
I form(action="/1login" ,method="post")

as SSIrT]F)IEB label(for="username') Enter username:
f input(id="username', type = 'text', name = 'username')

orms 1] label(for="password') Enter password:

12 input(id="password', type = 'password', name = 'password')

input (type='submit', value='Submit')

B0 00 =J On U B Wl B =

tends layout

Lad P

block content
- container
hl Registration Page
p Register here
or
form(action="/register" ,method="post")
label{for="username') Enter Username:
input(id="username', type = 'text', name = 'username')
label(for='password') Enter Password
input(id="'password',type ='password', name='password')
input(type='submit', value='Register')

[-

r
0

Front end:

Simple

Login

i LLL]

Register

First Post!
5

6

7

8

9

better
hella!

al ok here
ladjb
Hello

Send

Registration Page

Register here

Enter Username: gil

Simple

Register

You are currently logged in as Fred

Logout
Name Age

Bob
Max
tim
Bill
Name

39
16
37
27

Email Delete?

bob@bob Delete

max@max Delete

tim@mail Delete

bill@bill Delete

Age

Enter Password =esss|

Email

F=¥==] THE UNIVERSITY OF

¥ WESTERN
%ame? AUSTRALIA

| Register

Fa=y IHE UNIVERSITY OF

2¥ WESTERN
Mongo Backend W4 AUSTRALIA

* You can see how the account data is held via the
Mongo Shell:

> db.accounts. find().limit(1).pretty()

"_id" : ObjectId("574372ce76bb25692994956T"),

"salt" "bbfcdfaddf70b77593268828bB2525c7a153235952d197@4770e83e3e3T4c76e",

"hash" "6c5a430969330172e532e2cchb7T44617af15fablfdf f15a5dc99d904866c95Td730c6atlb5T4b2295calfff3a3fo9530c
a6Basccbef3ab36T36bdalB71f16Td1lbT602a4603c2191251d114dbad6513545F2T5b627a4B8af7ef38ddf2T038a690dabb72603a0addd1141aB
Be357f19de663100c6eboceb976ebd7cB9261b2d82d65bc433733232a40b6dB1%eae2d67bdcd9d6d30T5723b22bacd37677bd673636ecc@5alld

b®8817d6T8d94bc@dddab3668570b89db2ecPdadTb42adcBa7d54al826e6981a9997358133ad4b72380300492dca793016d98 fbdde f78Tb60b

3a58627eca59c9b76dcB536084%9achd226deeb270celae9eBlf5T17a5716e982a14240965ceaecbbb52bad@9bB82b65803a260T26c9e5d35ba03
1 f7bbf7e13659c08029728773c1a6712083076c11b49169854286c95c437 1e8b9d47b27323120af48%eeB32ac56834db362bc2652253ced95¢c
od77eb7757267c4b270176c6T2515264d7dc614b158T166ddcfccf2eBee27cf5910996010b66cThbd6d28e81cB11732e9061cb7198a7e4d242d0
5@7bcb4clbacBelda24d5d1ldabt@188d64ef270T47915a8T4568142a3b59b2cd6c3c41288a99028T5c67157159711306da71d75c4@48c63T1c2e
A5e@43cf2476ab35895101e56d55ba3b56b15e90dd6e foef4ddaddb39360975bd@ca48260e5cB0acl217895438918c3140a0d102 T4 c531a4da5
B3d9a93",

"username” : "Tim",

n U“ : ﬂ

L]
L]
L]
L]

Fo=gn=y [HE UNIVERSITY OF

N WESTERN
Next lecture.... £ 5 AUSTRALIA

* Testing and Agile development....

