
Topic 14: Client-
Side Rendering
CITS3403 Agile Web Development

Semester 1, 2023Reading: The Flask Mega-Tutorial, part 14
Miguel Grinberg
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-xiv-ajax

• A REST API takes your application
from the web to the internet. Any
device with TCP/IP can interact
with the application through HTTP
requests.

• We can interact with a REST API
through a number of mediums:
command line, Postman, or a web
browser.

• These applications create and
send http requests to the REST
API and receive http responses.

• Postman can also be used for
mocking APIs and automated
testing.

Accessing a REST API

• As a simple example of consuming a REST API we
will look at writing a low level single page
application that interacts directly with the API.

• It will use AJAX to send and receive requests from
the server.

• It will use Javascript and DOM to update the web
page.

• We will (redundantly) include it with an existing
server-side rendering app.

Javascript and DOM

Single Page Applications

• Single Page Applications have the browser/client do the heavy lifting in a web
application: The server just provides the data while the client does the logic and
rendering

AJAX
AJAX = Asynchronous JavaScript And XML.
• AJAX is not a programming language.
• AJAX just uses a combination of:

– A browser built-in XMLHttpRequest object (to request data from a web server)
– JavaScript and HTML DOM (to display or use the data)

• AJAX is a misleading name. AJAX applications might use XML to transport data,
but it is equally common to transport data as plain text or JSON text.

• AJAX allows web pages to be updated asynchronously by exchanging data with a
web server behind the scenes. This means that it is possible to update parts of a
web page, without reloading the whole page.

Application Architectures

Pros and Cons

Pros
• Less load on the server, able to respond to more clients.
• A more responsive client. No need to wait for server responses.
• Genuine separation between content and presentation.

Cons
• Longer load time, first up. A lot of JS has to be transferred.
• SEO can be a problem. Robots won’t crawl js.
• Navigation can be an issue.

• We will consider a very lightweight single page application in flask.
• We use the static directory, which is used to store the static

resources used by your application.
• In this directory we will include one file spa.html to contain the

html, and one file pairup.js to contain the javascript.
• It is common to use a number of javascript files to orgainse client

side models, and enhance reuse.

Design a Single Page Application in Flask

• We can use the
hidden attribute to
populate the HTML
with all the attributes
we will require, and
hide them.

• We create an id
attribute for most
elements so we can
reference them in the
DOM.

• We create
templates and
divs for any
future views.

Building the HTML

• The javascript will do several things. It will maintain client side
models.

• Here we have just declared variables for student, project and
authToken, which will be populated by AJAX.

• However we could (should) build more comprehensive models to
wrap up these AJAX functions.

• We also create references to the DOM elements we will need to
populate.

Using Javascript and DOM

• The client side models are typically different to the server side
models (e.g. we do not store passwords etc)

• Remember everything that is sent to the client is fully accessible
by the client, and anyone who has access to the client.

• These variable hold the data to be displayed visually (text fields,
dates), plus possible some data that will be used in requests
(such as primary keys for entities).

Client-side Models

Sending requests

• Requests are sent through at XMLHttpRequest object.
• The object is initialised, and then opens a connection to a server. The send method

sends the request to the server, and when the server responds, the status and
response can be accessed as properties.

• Browsers only handle GET and POST requests.

• The requests use a callback
(a function that waits for a
response before running.

• For authentication the user
data is included as
authentication fields, and an
auth token is received.

• For subsequent requests,
that auth token can be
included in the header of the
request.

• Note, we do not use forms,
since we are manually
creating the requests.

Preparing a Request

• Callbacks allow the browser
to run asynchronously. We
cannot get user data, until the
login is complete, we cannot
get project data until we have
the student number etc...

• This is often refered to as
callback hell, and can make
testing and debugging
difficult.

• Good callback design
requires a knowledge of
functional programming.

• In Node, asynchrony is used
server side as well.

Callbacks and Asynchrony

• Once we have received JSON
from the server we can populate
the HTML elements using
javascript and DOM.

• The setup function is ran when
the document first loads and
initialises the objects.

Populating the DOM

• To POST or PUT data we extract
user entered data from the input
elements and create javascript
objects.

• We include the JSON as a
parameter of the send function.

• We must set the content type to
JSON so that the flask API will
accept the data.

• To DELETE data we expect a
different response type.

Posting Data

• jQuery offers some low-level methods to make these operations
more succinct

Using jQuery

AngularJS
• Two-way Data Binding – Model as

single source of truth
• Directives – Extend HTML
• MVC
• Dependency Injection
• Testing
• Deep Linking (Map URL to route

Definition)
• Server-Side Communication

Angular is a MVC Javascript Framework by Google
for Rich Web Application Development

“Other frameworks deal with HTML’s shortcomings by
either abstracting away HTML, CSS, and/or
JavaScript or by providing an imperative way for
manipulating the DOM. Neither of these address
the root problem that HTML was not designed for
dynamic views”.

• Structure, Quality and Organization
• Lightweight (< 36KB compressed and minified)
• Free
• Separation of concern
• Modularity
• Extensibility & Maintainability
• Reusable Components

Data Binding

Angular Concepts
Template HTML with additional markup used to describe what

should be displayed

Directive Allows developer to extend HTML with own elements
and attributes (reusable pieces)

Scope Context where the model data is stored so that
templates and controllers can access

Compiler Processes the template to generate HTML for the
browser

Data Binding Syncing of the data between the Scope and the HTML
(two ways)

Dependency Injection Fetching and setting up all the functionality needed by a
component

Module A container for all the parts of an application

Service A way of packaging functionality to make it available to
any view

MVC vs MVVM

