WESTERN

e AUSTRALIA

Topic 13 RES THul
APls

CITS3403 Agile Web Development

Reading: Semester 1, 2023
The Flask Mega Tutorial, Chapter 23
Miguel Grinberg

Fo=g==y 1HE UNIVERSITY OF
Application Programming Interfaces @%@%{Eﬁ‘;{

The web applications we have looked at so far have been complete
applications. The backend provides the logic and persistent data storage
and then serves a graphical user interface to a browser for a user to
access the logic.

This has the logic and the presentation coupled together. If we wanted to
have a mobile version of the application, (iOS or Android or...) or some
other way of interacting with the web we would have to rebuild it.

An application programming interface is a means to provide the logic and
data structures of your app as a service to other developers so they can
embed the functionality into different applications and customise the user
interface.

Common examples are the Google Maps API, Dropbox API, Facebook
API, ...

800 THE UNIVERSITY OF
Common APIs %), WESTERN

« APIs allow developers to release)

SOftwa re aS a Se rVi Ce y a n d iS a key secret to trg;]::st bearer
b u i I d i n g b I OC k fo r m Od e rn We b ‘ ?‘?c?kce)r:(_type":"bearer"“‘access_token":"..4")

. . Parse bearer token
applications. is———
GET /search/tweets.js

 Web APIs work with http requests, in
standardized formats with
docuemented response types. e

‘ Parse APl response

REST API Developer Endpoint Reference #

Resource Base Route @
x
Posts /wp/v2/posts
Post Revisions /wp/v2/revisions
Categories /wp/v2/categories
o
Tags /wp/v2/tags sgon
o » . . &P
Pages /wp/v2/pages N pa? B -
Comments /wp/v2/comments - ,—? ..;.ﬁ‘. o Phigepia ©
“@ ke @

Taxonomies /wp/v2/taxonomies il MARYL

200 THE UNIVERSITY OF
Representational State Transfer @ WESTERN

 REpresentational State Transfer (REST) is an architecture for the
web that describe interactions with web based resources.

« HTTP is stateless, so there is no memory between transactions.
REST uses the current page as a proxy for state, and operations to
move from one to the other.

« REST was defined in 2000 by Roy Thomas Fielding:

Throughout the HTTP standardization process,

| was called on to defend the design choices of guum
the Web. That is an extremely difficult thing to
do within a process that accepts proposals from
anyone on a topic that was rapidly becoming
the center of an entire industry. ...That process
honed my model down to a core set of
principles, properties, and constraints that are
now called REST.

: T WESTERN
The six Characteristics of REST A& AUSTRALIA

Dr Fielding was one of the principal authors of the HTTP protocaoal,
and his thesis sought to make the design choices of the web
explicit.

In his thesis, Dr Fielding set out six high level characteristics of

REST: client-server, layered system, cache, code on demand,
Stateless, uniform interface.

These are not enforced, so are interpreted differently by
developers, and there is one optional characteristic.

Most big companies, like Google, Facebook and Twitter implement

Use with any language

a pragmatic version of REST. .+ reosenian -

< { Java) Lightweight
\ N\ N | v
\ GET X N\ N Python P | \'|
\ \ | I Stateless /
\ \ e e“ l “ ‘
\,____POST \ \ “ '
\ N '

Fast

|
i Simple data structure
v

XML

Fo=g==y 1HE UNIVERSITY OF
1. Client Server Model "@’i WESTERN

AUSTRALIA
 The client server model sets out the '

different roles of the client and the >

server in the system. ‘
« They should be clearly differentiated REST Web Services Server

and running as separate processes, @ Supporte] Formats are 0

and communicate over a transport XML, JSON , HTML,

Ia er \ TEXT etc. '

y) HTTP Request HTTP Response

» In practice the interface between the
client and the server is through

HTTP, and the transport layer is '
TCP/IP. E

REST Web Service Client

RESTful Web Service Architecture

THE UNIVERS[TYﬁ:
2. Layered System A XYJ%%EEA

* The layered system characteristic states that there does not need to
be a direct link between the client and the server, and that they can
communicate through intermediate nodes.

* The client does not need to distinguish between the actual server and
an intermediary, and the server doesn’t need to know whetehr it is
communicating directly with the client.

* This encapsulates the abstract nature of the interface , and allows
web services to scale, through proxy servers and load balancers.

Internet -

=

a
Users FIRHTTPS,SSH @ conne cton and
sends it back to the
user through the
proxy server

3. Cache

THE UNIVERSITY OF
J@Y. WESTERN
%am? AUSTRALIA

* The cache principle states that it is acceptable for the client or
iIntermediaries to cache responses to requests, and serve these
without going back to the server every time.

* This allows for efficient operation of the web.

* The server needs to specify what can and can’t be cached, (i.e.
what is static and dynamic data)

« Also, anything encrypted cannot be cached by an intermediary.
» All web browsers implement a cache to save reloading the same

static files.

Client
Browser

Request

-

-

Response
(headers dictate cache policy)

Store for later use

Web
Server

Fo=g==y 1HE UNIVERSITY OF
4. Code on Demand (optional) @%@%{E‘Eﬁ

 The code on demand principle states that the server can provide
executable code in responses to a client.

« This is common practice with web browsers, where javascript is
provided to be run by the client.

 However this isn’t commonly included in REST APIs since there is
no standard for executable code, so for example, iOS won’t execute
javascript.

D Server
Interim Node I
(0.9
S
S
/ Other
Interim

Scripts can be downloaded to add
Sfeatures to clients

WESTERN
5. Stateless A& AUSTRALIA

« Statelessness is one of the key properties of the HT TP protocol, and
most associated with REST APls.

|t states that the server should not maintain any memory of prior
transactions, and every request from the client should include
sufficient context for the server to satisfy the request.

* The representative state is in the url or route that is requested by the
client, and is sent through with each request.

* This makes the service easy to scale, as a load balancer can deploy
two servers to satisfy arbitrary requests, and they do not need to
communicate. \

Pragmatically, many REST APls do
record state for session
management.

THE UNIVERSITY OF

- WESTERN
6. Uniform Interface A& AUSTRALIA

« The most important, and most vague, requirement of REST is that
there be a uniform interface, so clients in principle do not need to be
specifically designed to consume a server.

* The four aspects of the uniform interface are:

- Unique resource identifers. This is the url, and typically is of the
form api/users/<id>

- Resource representations. The data exchange between client
and server should be through an agreed format, typically
JSON, but possibly others. HTTP can do content negotiation.

- Self descriptive messages. The communication between client
and server should make the intended action clear.

- Hypermedia links. A client should be able to discover new
resources by following provided hyperlinks.

- THE UNIVERSITY OF
RESTful operations S, WESIERN

 The standard CRUD
operations are create, read, kol o
update and delete, and these = o
are typical ways to interact ‘J ——
with our data model. R =

* In web apps, these o © v omas amesran e
operations are mapped to oo Sl e e
the operations: POST, GET,
PUT (PATCH) and DELETE.

* These operations can be -
applied to each route in our i

application to allow

interaction with the server p— o on
Slde data mOdel [apilmovies/id DELETE | empy | Dolets oistng

String | Created

[api/movies/:id

GET

empty | Returns single

REST URLs and Operations

REST APIs offer a standard

approach to accessing o
web-based resources
 Request URLs for a oeT Read

REST API have a simple

standard. PuT Update/Replace
« Consider each collection

in your data base as IO

having an associated

URL. CELETE | Delete

HTTP methods

Uniform Resource Locator (URL) GET PUT

Collection, such as

List the URIs and perhaps other details of
http://api.example.com

the collection's members.

Replace the entire collection

with another collection.
/resources/

Replace the addressed
member of the collection, or if
it does not exist, create it.

Element, such as Retrieve a representation of the addressed
member of the collection, expressed in an

appropriate Internet media type.

http://api.example.com
/resources/iteml7

THE UNIVERSITY OF

WESTERN

&% AUSTRALIA

ENTIRE COLLECTION (E.G. /USERS)

201 (Created), ‘Location’ header with link

to /users/{id} containing new ID.

200 (OK), list of users. Use pagination,

sorting and filtering to navigate big lists.

404 (Not Found), unless you want to
update every resource in the entire

collection of resource.

404 (Not Found), unless you want to

modify the collection itself.

404 (Not Found), unless you want to

delete the whole collection — use with

caution.

POST

Create a new entry in the collection. The new
entry's URI is assigned automatically and is
usually returned by the operation.[17]

Not generally used. Treat the addressed
member as a collection in its own right and

create a new entry within it.l'7]

SPECIFIC ITEM (E.G. /USERS/123)

Avoid using POST on single

resource

200 (OK), single user. 404 (Not

Found), if ID not found or invalid.

200 (OK) or 204 (No Content). Use
404 (Not Found), if ID not found or

invalid.

200 (OK) or 204 (No Content). Use
404 (Not Found), if ID not found or

invalid.

200 (OK). 404 (Not Found), if ID not

found or invalid.

DELETE

Delete the entire
collection.

Delete the
addressed member
of the collection.

REST vs SOAP & AUSTRALIA

« The Simple Object Access
F.)) SOAP vs. REST Comparison:
Protocol is often seen as an Which is Right for You?
alternative to REST and is used in

Style Protocol Architectural style

« |tis a protocol, rather than an
a rCh ite Ctu ra I Styl e I i ke R E ST, a n d Function ;L;(r;:rt;c;rtmi-;inriven: transfer structured z)itg;c:;iven: ccccccccccccccc
IS much stricter in its

including plain text, HTML, XML,

iImplementation
.
Security Supports WS-Security and SSL Supports SSL and HTTPS
SOAPMessage (an XML document)
SOAPPart Bandwidth Requires more resources an d Requires fewer resources and is
bandwidth lightweight
SOAPEnvelope It

SOAPHeader (optional)

Data cache Can not be cached Can be cached
Header
Header

Payload handling Has a strict communication contract Needs no knowledge of the API
and needs knowledge of everything

SOAPBOGY before any interaction

XML Content ACID i .))
or SOAPFault compliance Has built-in AC_ID compliance to Lacks ACID compliance
reduce anomalies

- L ¥¥ WESTERN
Providing a REST API to a web application. &&# AUSTRALIA

 The simple project described here is quite basic: it does all the hard
work on the server side.

A more responsive web application does most of the work on the
client side.

« AREST API provides a web interface to the back end data model.

« This serves JSON to the client application, but all rendering of the
data is then done on the client side by JavaScript modules (e.qg.
Angular, or AJAX and jQuery)

* In fact, the client side can implement a full MVC architecture, where
the models interface with the API.

« We can augment a flask web application so that it provides a REST
APl but shares the database with the web application.

L W¥ WESTERN
New application structure W% AUSTRALIA

e Currently our Flask Application « We are going to add an api

looks something like: module in the app folder
e\ containing:
app
aéﬂ%fw'py - init .py toinitialise
models.py —_— —
routes.py the api
templates)
ceariey TS - auth.py to handle the
app.db pootstrep css. token based authentication
config.py
tests\ - models api.py to handle
unittest.py .
virtusten\ the api routes for each
model
app\ it oy - token api.py tohandle
wN the tokens.
— __-Py
auth.py

models_api.p
token_api.pi
FORMS.PY

madale nu

Choosing a route structure.

The route structure indicates the
requests that the application should
serve, or the resources a client can

dCCesSs.

They are typically aligned with the
model structure.

The api can assign methods to routes.

This application structure form the
mega-tutorial uses blueprints.

HTTP Method

Resource URL

Notes

GET

/api/users/<id>

Return a user.

GET

/api/users

Return the collection of all users.

GET

/api/users/<id>/followers

Return the followers of this user.

GET

/api/users/<id>/followed

Return the users this user is following.

POST

/api/users

Register a new user account.

PUT

/api/users/<id>

Modify a user.

VN WESTERN
%am? AUSTRALIA

app/api/users.py: User API resource placeholders.

THE UNIVERSITY OF

: W WESTERN
A simpler structure AUSTRALIA

app import app, db

app.models import Student,Project,Lab
app.api.errors import bad_request, error_response
flask import jsonify, url_for, request, g, abort
app.api.auth import token_auth

Blueprints use the factory pattern to
make testing and deployment
easier, but are out of scope for this e S SR)

def get_student(id):

COU rse. ifag(.):zzrten';_user 1= id:

return jsonify(Student.query.get_or_404(id).to_dict())

A simpler structure is as follows: @app. route("/3pt/students' nethods=['POST])

def register_ student()
data = request.get_json() or {}
o - - - - if 'id' not in data or i not in data
1 rom app.api import student_api, project_api, token_api e el = o e
2 from app import app student = Student.query. get(data[ID)
if student is None:
return bad_request(known student')
if student.password_hash is not None:
return bad_request('Student alrea
student.from_dict(data)
db.session.commit()

iWrom flask import Flask response =jsonify(user.to_dict())
2 from config import Config response.status_code = 201 #creating a new resource should chare th

3 from flaSk_SqlaIChe"“y impor'F SQLAlchemy .}e':.sponse.headers[cation'] = url_for('get_student',id=student.id)
4 from flask_migrate import Migrate return response

5 from flask_login import LoginManager

6 @app.route(i/st nt i :1d>",methods=['PUT'])

_ @token_auth.login_ requ‘Lred
7 app = Flask(__name_) def update_student(id):

8 app.config.from_object('c ig.Dev ; nfig LF g.current_user I= id:

9 db = SQLAlchemy(app) abort(463)

10 migrate = Migrate(app, db) data = request.get_json() or {}
11 109"[[] = LoglnManager(app) student = Student.query.get(id)

if student is None:
12 login.login_view = return bad_request(- v t

13 if student.password_hash is None:
14 #from app import routes,models return bad_request('Student not
15 from app import routes,models,api student.from_dict(data)
db.session.commit()
return jsonify(student.to_dict())

NV D WN =

a api/student_api.

WESTERN
Choosing a JSON structure &5 AUSTRALIA

 The requests and responses to the API needs to be in some

standard format. For each route we can assign a JSON structure for
data transfer.

« We add methods to our models to read from and write to the JSON.

def to_dict(self):
data = {
id': self.id,
irst_name':self.first_name,
e': self.surname,
e': self.prefered_name,

;'Vérrizéelf.cits3403,
links': { ject':url_for('get_student_project',id = self.id)}

return data

def from_dict(self, data):
if -efered_name' 1in data:
self.prefered_name=data['prefered name
if i in data :
self.set_password(data['pin'])

ipp/models.py 103,1

Error messages

THE UNIVERSITY OF
J@Y. WESTERN
%am? AUSTRALIA

 As we no longer have a web page to display errors, we need to

send them as responses.

« The jsonify module in flask will automatically build a JSON
response with the JSON payload and the response code.

* bad request is just a wrapper for any error caught when trying to

serve a request.

1 fjrom flask import jsonify

2 from werkzeug.http import HTTP_STATUS_ CODES

3

4 def error_response(status_code, message=None):

: HTTP_STATUS_CODES.get(status_code,

payload={'err
if message:

payload['me e'] = message
response = jsonify(payload)
response.status_code = status_code
return response

def bad_request(message):
return error_response(400, message)

api/errors.

1,1

. HTIP/1.1 201 C@ﬂtﬁd\
Version———¢% Status Code

Headers

—

Entity Body
(Content)

he-Control: no-cache
Pragma: no-cache
Content-Type: application/json; charset=utf-8
Expires: -1
Location: http://localhost:808 1/api/contacts/6
Server: Microsoft-11S/8.0
X-AspNet-Version: 4.0.30319
X-SourceFiles: =?UTF-8?B?
QzpcQ29udGFjdE1hbmFnZXJcQyNcQ29udGFjdE1hb
X-Powered-By: ASP.NET
Date: Sat, 22 Dec 2012 21:31:04 GMT
Content-Length: 175

"Contactld":6,

"Name":"Jane User",

"Address":"1 Any Street",
"City":"Any City","State":"WA",
"Zip":"00000",
"Email":"janeuser@example.com”,
"Twitter":null,
"Self":"/api/contacts/1"

THE UNIVERSITY OF

WESTERN

HTML response codes AUSTRALIA
1xx Informational

100 Continue 101 Switching Protocols 102 Processing (WebDAV)

2xx Success

% 200 OK % 201 Created 202 Accepted

203 Non-Authoritative Information
206 Partial Content
226 IM Used

3xx Redirection

300 Multiple Choices
303 See Other
306 (Unused)

4xx Client Error

% 400 Bad Request

% 403 Forbidden

406 Not Acceptable

% 409 Conflict

412 Precondition Failed

415 Unsupported Media Type

418 I'm a teapot (RFC 2324)

423 Locked (WebDAV)

426 Upgrade Required

431 Request Header Fields Too Large
450 Blocked by Windows Parental Controls (Microsoft)

5xx Server Error

% 500 Internal Server Error

503 Service Unavailable

506 Variant Also Negotiates (Experimental)
509 Bandwidth Limit Exceeded (Apache)
598 Network read timeout error

% 204 No Content
207 Multi-Status (WebDAV)

301 Moved Permanently
% 304 Not Modified
307 Temporary Redirect

% 401 Unauthorized

% 404 Not Found

407 Proxy Authentication Required
410 Gone

413 Request Entity Too Large

416 Requested Range Not Satisfiable
420 Enhance Your Calm (Twitter)
424 Failed Dependency (WebDAV)
428 Precondition Required

444 No Response (Nginx)

451 Unavailable For Legal Reasons

501 Not Implemented

504 Gateway Timeout

507 Insufficient Storage (WebDAV)
510 Not Extended

599 Network connect timeout error

205 Reset Content
208 Already Reported (WebDAV)

302 Found
305 Use Proxy
308 Permanent Redirect (experiemental)

402 Payment Required

405 Method Not Allowed

408 Request Timeout

411 Length Required

414 Request-URI Too Long

417 Expectation Failed

422 Unprocessable Entity (WebDAV)
425 Reserved for WebDAV

429 Too Many Requests

449 Retry With (Microsoft)

499 Client Closed Request (Nginx)

502 Bad Gateway

505 HTTP Version Not Supported
508 Loop Detected (WebDAV)

511 Network Authentication Required

WESTERN
Serving the routes: GET requests &5 AUSTRALIA

« The Qapp.route decorator allows us to specify parameters, which
align with the parameter name in the method

8 @app.route('/api/students/<int:id>',methods=["'GET'])
9 @token_auth. logln requxred
def get_student(id):
if g.current_user != id:
abort(403)

Erom app import app, db

from app.models import Student,Project,Lab

from app.api.errors import bad_request, error_response
from flask import jsonify, url_for, request

return jsonify(Student.query.get_or_404(id).to_dict()) @app.route('/api/projects',methods=['GET'])
def 1list_projects():

aii‘aii‘student aii.ii projectList = Project.query.all()
projects = []

for p in projectList:
= p.get_team()

\/\/r]EBr] r1() F>Eir€ar1]€at€3r.is; iftl:;(z);?j.prefered_name +' & '+t[1].prefered_name

else:

O~NOUL A WN =

specified for a GET request, team = t[0].prefered_name e
. . 1.= Lab.query.fllter_by(lab_ld = p.lab_id).first()
the assumption is that the user Eine = str(l.tine)
wants the collection of all p.description. ean: team. 13D’ lup, tine: :ELNE)).
20 projects.sort(key = lambda p: p['] J+p['time'])
reSOUI’CeS 21 return jsonify(projects)

22

23 @app.route('/api/available labs/',methods=['GET'])

24 def get_available labs()

25 lab_1id = request.args.get('! id')

26 labs = Lab. get_available labs()

27 if lab_1id!=None:

28 lab = Lab.query.get(lab_id)

29 choices = [{'lab_id': lab.lab_id, 'lab_ : lab.lab+

+str(lab.time)

app/api/project _api.py

15 @app.route(i/student

Serving the routes: POST requests

A POST request is used to
create a new resource.

Creating a project is done by a

student, so is included in
api/student/<id>/projec

t

New resources should include
their location in the response

16 def register_ student()

17
18
19
20
21
22
23
24
25

data = request.get_json() or {}
if 'i not in data or not in data
return bad_request(st e stude
student = Student.query. get(data[
if student is None:
return bad_request('L t t')
if student.password_| hash is not None
return bad_request('Student
student.from_dict(data)
db.session.commit()
response =jsonify(user.to_dict())
response.status_code = 2
response.headers['Locati
return response

app/api/student_api.py

,methods=['])

1 #creating a new resc
] = url_for('get

urce

should chare the location....
student',id=student.id)

59 @app.route('/api/students
60 @token_auth.login_ requxred
61 def new_student_project(id):

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

if g.current_user != id:
abort(403)
data = request get_json() or {}
if 'de tion' not in data or
return bad_request(:
student = Student.query. get(1d)
if student is None:
return bad_request(nown st
if student.project_id is not None
return bad_request('S ent alread
partner=None
if 'partner' in data:
partner = Student.query.get(data[
if partner is None:
return bad_request(
if partner.project_id is not None
return bad_request('F
if partner is None and student c1ts3403
return bad_request('CITS3403
lab = Lab.query.get(data['l])
if 1ab is None or not lab is avallable()
return bad request(
#all good,
project= Pro;ect(),
project.description = description
project.lab_id=1ab.1lab_id
db.session.add(project)
db.session.flush() #generates
student.project_id = project.project_id
if partner is not None:
partner.project_id=project.project_id
db.session.commit()
response =jsonify(project. to dlCt())

95 D response.status_code = 2

96

97

location....

response.headers['Locati] = url_for(

nt.id)

return response

app/api/student_api.py

pk for new

THE UNIVERSITY OF

WESTERN

,methods=[

not in data:

project

W resource

AUSTRALIA

should chare the

,id=stude

WESTERN
Serving the routes: PUT requests &5 AUSTRALIA

100 @app.route('/api/students/<int:id ject/' ,methods=['PUT'])

Updating resources is
typically done through e

if g.current_user != id:

PUT requests, although abor t(403)

data = request get_json() or {}
1ot 1 if 'descripti not in data or 'lab_id' not in data:
some people dlStIngL‘“Sh return bad_request('Must i ude description and lab_:
student = Student.query. get(ld)

between PUT (OVGFWI’Ite if student is None:

return bad_request('Ur n student')

resource) and PATCH if student.project_id is None:

return bad_request('Student y £X)

(update some resource project = Project. query.get(student. project_id)

team = project.get_team()

. if not team[0].1d==current_user.id:
fleldS) partner = team[@]

elif len(team)>1:

,- partner = team[1]
32 @app.route('/api/students/<int:1d>", bt else:

33 @token_auth.login_ requ1red partner=None

34 def update_student(ld) 1lab = Lab. query. get(data[lab 1])

35 1if g.current_user != id: if 1lab is None or (not lab is avallable() and lab.lab_id != project.lab_id):
36 abort(403) return bad request(: available')
37 data = request.get_json() or {} #all good, create p

38 student = Student.query.get(id) project.description = description

39 if student is None: project.lab_id=1ab.1lab_id

40 return bad_request('Ur tudent student.project_id = project.project_id
41 if student.password_hash is None if partner is not None:

42 return bad_request('Student not registerec partner.project_id=project.project_id
43 student.from_dict(data) db.session.commit() :

44 db.session.commit() feturn Jsonlfy(prOJect.to_dlct())

45 return jsonify(student.to_dict()) app/api/student_api.py

46

app/api/student_api.py

WESTERN
Serving the routes: DELETE requests g,?i, AUSTRALIA

« Finally for our delete operation, we will return the deleted project.

 We also have a delete operation for our authentication token, that
has an empty response body

jron flask import jsonify, g 134 @app.route('/api/student trid -0oject/' ,methods=['DELETE'])
from app import app, db) 135 @token_auth.login_ requ1red
from app.api.auth import basic_auth, token_auth 136 def delete student_project(id):
@app.route(' /api/tokens', methods=['POST']) 137 if g.current_user != id:
@basic_auth.login_required abort(463)
def get_token(): student = Student.query.get(id)
token = g.current_user.get_token() £ if student is None:
db.sessi‘on.gommit() { return bad_request(
return jsonify({'token’:token}) if student.project_id is None:
@app.route(i/tokens', methods=['DELETE']) return bad_request(s ect’)
@token_auth.login_required project = Project.query. get(student prOJect ld)
4 def revoke_token(): : if project is None:
g.current_user.revoke token() return bad_request('Project not found')
db.session.commit() ' for s in project.get_team():
return '', 204 # no response body required ¢ s.project_id = None
db.session.delete(project)
db.session.commit()
return jsonify(project.to_dict())
app/api/student_api.py

WO B WA e

app/api/token_api.py

Consuming a REST API with AJAX and jQuery

THE UNIVERSITY OF

WESTERN
%ams? AUSTRALIA

- We can consume the REST API in a webpage using

AJAX and jQuery

"id": 166
"content” Hello, World!
consume-rest.js
$ (document) .ready (function
$.ajax
url: "http://rest-service.guides.spring.io/greeting”
success: function (data
$("#id append(data.id
$("#content append(data.content
error: function (xhr, ajaxOptions, thrownError

alert(xhr.responseText + + xhr.status +

+ thrownError

consume-restful-webservice-jquery.html

<!DOCTYPE html
html
head
title>How to consume RESTful Web Service using jQuery
script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1,
script src="js/consume-rest.js script
head
body
div
h3>How to consume RESTful Web Service using jQuery</h3
p id="id">ID: p
p id="content"”>Content: p
div
body
html
< C 1 @ localhost:8383/web/consume-restful-webservice
How to consume RESTful Web Service using jQuery
ID: 166

Content: Hello: World! @}We ‘) S I) arrow.o rg

title

jquery.html

