
Topic 13 RESTful
APIs
CITS3403 Agile Web Development

Semester 1, 2023Reading:
The Flask Mega Tutorial, Chapter 23
Miguel Grinberg

Application Programming Interfaces

• The web applications we have looked at so far have been complete
applications. The backend provides the logic and persistent data storage
and then serves a graphical user interface to a browser for a user to
access the logic.

• This has the logic and the presentation coupled together. If we wanted to
have a mobile version of the application, (iOS or Android or…) or some
other way of interacting with the web we would have to rebuild it.

• An application programming interface is a means to provide the logic and
data structures of your app as a service to other developers so they can
embed the functionality into different applications and customise the user
interface.

• Common examples are the Google Maps API, Dropbox API, Facebook
API, ...

•

Common APIs

• APIs allow developers to release
software as a service, and is a key
building block for modern web
applications.

• Web APIs work with http requests, in
standardized formats with
docuemented response types.

Representational State Transfer

• REpresentational State Transfer (REST) is an architecture for the
web that describe interactions with web based resources.

• HTTP is stateless, so there is no memory between transactions.
REST uses the current page as a proxy for state, and operations to
move from one to the other.

• REST was defined in 2000 by Roy Thomas Fielding:

Throughout the HTTP standardization process,
I was called on to defend the design choices of
the Web. That is an extremely difficult thing to
do within a process that accepts proposals from
anyone on a topic that was rapidly becoming
the center of an entire industry. …That process
honed my model down to a core set of
principles, properties, and constraints that are
now called REST.

The six Characteristics of REST

• Dr Fielding was one of the principal authors of the HTTP protocol,
and his thesis sought to make the design choices of the web
explicit.

• In his thesis, Dr Fielding set out six high level characteristics of
REST: client-server, layered system, cache, code on demand,
stateless, uniform interface.

• These are not enforced, so are interpreted differently by
developers, and there is one optional characteristic.

• Most big companies, like Google, Facebook and Twitter implement
a pragmatic version of REST.

1. Client Server Model

• The client server model sets out the
different roles of the client and the
server in the system.

• They should be clearly differentiated
and running as separate processes,
and communicate over a transport
layer.

• In practice the interface between the
client and the server is through
HTTP, and the transport layer is
TCP/IP.

2. Layered System

• The layered system characteristic states that there does not need to
be a direct link between the client and the server, and that they can
communicate through intermediate nodes.

• The client does not need to distinguish between the actual server and
an intermediary, and the server doesn’t need to know whetehr it is
communicating directly with the client.

• This encapsulates the abstract nature of the interface , and allows
web services to scale, through proxy servers and load balancers.

3. Cache

• The cache principle states that it is acceptable for the client or
intermediaries to cache responses to requests, and serve these
without going back to the server every time.

• This allows for efficient operation of the web.
• The server needs to specify what can and can’t be cached, (i.e.

what is static and dynamic data)
• Also, anything encrypted cannot be cached by an intermediary.
• All web browsers implement a cache to save reloading the same

static files.

4. Code on Demand (optional)

• The code on demand principle states that the server can provide
executable code in responses to a client.

• This is common practice with web browsers, where javascript is
provided to be run by the client.

• However this isn’t commonly included in REST APIs since there is
no standard for executable code, so for example, iOS won’t execute
javascript.

5. Stateless

• Statelessness is one of the key properties of the HTTP protocol, and
most associated with REST APIs.

• It states that the server should not maintain any memory of prior
transactions, and every request from the client should include
sufficient context for the server to satisfy the request.

• The representative state is in the url or route that is requested by the
client, and is sent through with each request.

• This makes the service easy to scale, as a load balancer can deploy
two servers to satisfy arbitrary requests, and they do not need to
communicate.

l Pragmatically, many REST APIs do
record state for session
management.

6. Uniform Interface

• The most important, and most vague, requirement of REST is that
there be a uniform interface, so clients in principle do not need to be
specifically designed to consume a server.

• The four aspects of the uniform interface are:
- Unique resource identifers. This is the url, and typically is of the

form api/users/<id>

- Resource representations. The data exchange between client
and server should be through an agreed format, typically
JSON, but possibly others. HTTP can do content negotiation.

- Self descriptive messages. The communication between client
and server should make the intended action clear.

- Hypermedia links. A client should be able to discover new
resources by following provided hyperlinks.

RESTful operations

• The standard CRUD
operations are create, read,
update and delete, and these
are typical ways to interact
with our data model.

• In web apps, these
operations are mapped to
the operations: POST, GET,
PUT (PATCH) and DELETE.

• These operations can be
applied to each route in our
application to allow
interaction with the server
side data model.

REST URLs and Operations

REST APIs offer a standard
approach to accessing
web-based resources
• Request URLs for a

REST API have a simple
standard.

• Consider each collection
in your data base as
having an associated
URL.

• The Simple Object Access
Protocol is often seen as an
alternative to REST and is used in
many enterprise systems.

• It is a protocol, rather than an
architectural style like REST, and
is much stricter in its
implementation.

REST vs SOAP

• The simple project described here is quite basic: it does all the hard
work on the server side.

• A more responsive web application does most of the work on the
client side.

• A REST API provides a web interface to the back end data model.
• This serves JSON to the client application, but all rendering of the

data is then done on the client side by JavaScript modules (e.g.
Angular, or AJAX and jQuery)

• In fact, the client side can implement a full MVC architecture, where
the models interface with the API.

• We can augment a flask web application so that it provides a REST
API but shares the database with the web application.

Providing a REST API to a web application.

• Currently our Flask Application
looks something like:

New application structure

• We are going to add an api
module in the app folder
containing:
- __init__.py to initialise

the api
- auth.py to handle the

token based authentication
- models_api.py to handle

the api routes for each
model

- token_api.py to handle
the tokens.

• The route structure indicates the
requests that the application should
serve, or the resources a client can
access.

• They are typically aligned with the
model structure.

• The api can assign methods to routes.
• This application structure form the

mega-tutorial uses blueprints.

Choosing a route structure.

• Blueprints use the factory pattern to
make testing and deployment
easier, but are out of scope for this
course.

• A simpler structure is as follows:

A simpler structure

• The requests and responses to the API needs to be in some
standard format. For each route we can assign a JSON structure for
data transfer.

• We add methods to our models to read from and write to the JSON.

Choosing a JSON structure

• As we no longer have a web page to display errors, we need to
send them as responses.

• The jsonify module in flask will automatically build a JSON
response with the JSON payload and the response code.

• bad_request is just a wrapper for any error caught when trying to
serve a request.

Error messages

HTML response codes

• The @app.route decorator allows us to specify parameters, which
align with the parameter name in the method

Serving the routes: GET requests

• When no parameter is
specified for a GET request,
the assumption is that the user
wants the collection of all
resources.

• A POST request is used to
create a new resource.

• Creating a project is done by a
student, so is included in
api/student/<id>/projec
t

• New resources should include
their location in the response

Serving the routes: POST requests

• Updating resources is
typically done through
PUT requests, although
some people distinguish
between PUT (overwrite
resource) and PATCH
(update some resource
fields).

Serving the routes: PUT requests

• Finally for our delete operation, we will return the deleted project.
• We also have a delete operation for our authentication token, that

has an empty response body

Serving the routes: DELETE requests

• We can consume the REST API in a webpage using
AJAX and jQuery

Consuming a REST API with AJAX and jQuery

