WESTERN

e AUSTRALIA

Topic 12: Testing

CITS3403 Agile Web Development

Getting MEAN with Mongo, Semester 1, 2023
Express, Angular and Node,
Chapter 11

WESTERN
Verification and Validation \ & AUSTRALIA

Writing a bug free application is critical to to success of that application.
There are various ways to eliminate bugs.

— Code inspections: having peers critically examine your code and make
suggestions.

— Formal verification: building precise specifications of correctness, and proving
the code meets these specs.

— Testing: Providing test cases of inputs and actions, and expected behaviors.

Testing is a key activity in any software development, but particularly in agile
development, where the test suites are a proxy for requirements documentation.

Test Driven Design specifies that the tests should be written first, and the code
designed specifically to pass those tests.

Agile also relies heavily on test automation, so that every sprint or iteration can
be checked against the existing test suite.

The V-model & AUSTRALIA

« The V-model links types of tests to stages in the development process.
« We will focus on unit tests and system tests.

Concept of Acceptance
Operations Test

System
Requirements |

Subsystem Subsystem

Requirements Test
e Subsystem

Subsystem Integration
Design Test

W¥ WESTERN
Types of test \e# AUSTRALIA

« Unit Tests: test each individual function for to ensure it behaves correctly
(2-5 tests per function)

* Integration Test: Execute each scenario to make sure modules integrate
correctly.

« System Test: Integrate real hardware platforms.

« Acceptance Test: Run through complete user scenarios via the user
interface.

The tests should be repeatable, and should have a clear scope. Any changes
to anything outside that scope should not affect whether the test passes.

To isolate the system under test (SUT) from external systems, we use test
doubles: fakes, stubs and mocks.

Test Doubles

* Fakes are objects with working
implementations, but not the same as the
production environment. In the diagram, the full
database has been replaced by an object
wrapping a hashmap.

« Astub is an object that holds predefined data to
respond to specific requests. For example, To

test the login GUI, we could provide a stub that

SN

accepts only the password ‘pw’ regardless of
the user.

 Mocks work like stubs but they register the calls
they receive, so we can assert that the correct
action was performed, or the correct message
was sent. In the example, a door mock is used
to verify that the close() methoid was called,
without interacting with hardware.

WESTERN
Unit Test Structure \ & AUSTRALIA

* In python, unit testing is most commonly done with the module unittest.
« This provides a number of classes and functions;

- Test fixtures: These are the methods to prepare for a test case, called
setUp and tearDown.

- TestCase: This is the standard class for running a test. It specifies the setUp,
tearDown, and a number of functions to execute.

- TestSuite: Running comprehensive tests is expensive, so often you don’t
want to run every test case. Test suites allow test cases to be grouped
together to be run at once.

- Test Runners: These run the tests and report the reuslts
unittest)

« Typically you only have to write the test ase o Testsuite

cases, and the rest is automatic. < i B

TestResults

Writing some simple tests:

To write some basic unit tests, we
should import unittest, and the
modules/classes under test.

We then subclass TestCase for each
unit we want to test.

We specify the setUp for each test (e.g.

populating a dummy database, or
creating instances), and the tearDown

after each test (e.g. resetting the
database).

Flask has a method test_client() to run a
sandboxed version of the app.

We then specify a set of tests. These
must begin with ‘test’, and use the

assert methods to define whether the
test passes

python unittest <filename>

1 import unittest, os

2 from app import app, db

3 from app.models import Student, Project, Lab
4

5 class StudentModelCase(unittest.TestCase):

def setUp(self):
basedir = os.path. abspath(os path dlrname(file_))
app. conflg[QLALCHE
' E

; +0S. path 301n(based1r test.d
self.app = app.test_client()#creates a vmrtual test environment
db.create_all()
s1 = Student(id= ,first_name="T
s2 = Student(id='11111111",first_name='Uni
lab = Lab(lab="'test-1lab',time=)
db.session.add(s1)
db.session.add(s2)
db.session.add(lab)
db.session.commit()

t',surname=
t',surname='Test

,Cc1ts3403=True)
,Cci1ts3403=True)

def tearDown(self):
db.session.remove()
db.drop_all()

def test_password_hashing(self):
s = Student.query. get()
s.set_password('t)
self. assertFalse(s check _password(
self.assertTrue(s.check_password('test

e'))
))

def test_is_committed(self):
s = Student. query.get()
self.assertFalse(s.is commltted())
s2 = Student.query.get('111111
lab = Lab.query.first()
p = Project(description='test
db.session.add(p)
db.session.flush()
s.project_id = p.project_id
s2.project_id = p.project_id
db.session.commit()
self.assertTrue(s.is_committed())

,lab_id=lab.lab_id)

44 if name ==

tests/unittest.py [+]7 10,9 Top|

(virtual-environment) drtnf@drtnf-ThinkPad:$ python3 -W ignore -m tests.unittest
est_i1s_committed (__main__.StudentModelCase) ... ok

est_password_hashing (__main__.StudentModelCase) ... ok

2 tests in 0.581s

Ran

K

Assertions:

Assertions describe the checks the
test performs. They can be
supplemented with messages to give
diagnostic information about the failing
cases.

Each test can have multiple
assertions, and the test only passes if
every assertion is true.

We can also assert that an exception
or a warning is raised. If the exception
is raised, then the test passes.

There are many other assertion
libraries that can be imported and
produce more readable test cases,

from assertpy import assert_that

def test_something():
assert_that(l + 2).is_equal_to(3)
assert_that('foobar').is_length(6).starts_with('foo').ends_with('bar')

assert_that(['a', 'b', 'c']).contains('a').does_not_contain('x")

Method
assertEqual(a, b)
assertNotEqual(a, b)
assertTrue(x)
assertFalse(x)
assertls(a, b)
assertIsNot(a, b)
assertIsNone(x)
assertIsNotNone(x)
assertIn(a, b)
assertNotIn(a, b)

assertIsInstance(a, b)

assertNotIsInstance(a, b)

Method
assertRaises(exc, fun, *args,
assertRaisesRegex(exc, r, fun,
**Kkwds)
assertWarns(warn, fun, *args,
assertWarnsRegex(warn, r, fun,
**kwds)

assertLogs(logger, level)

**kwds)

*args,

**kwds)

*args,

V¥ WESTERN
%am? AUSTRALIA

Checks that New in
a ==

al'=»b

bool(x) is True

bool(x) is False

aisb 3.1
a is not b 3.1
X is None 3.1
X is not None 3.1
ainb 3.1
a not in b 3.1
isinstance(a, b) 3.2

not isinstance(a, b) 3.2

Checks that
fun(*args, **kwds) raises exc

fun(*args, **kwds) raises exc
and the message matches regex r

fun(*args, **kwds) raises warn

fun(*args, **kwds) raises warn
and the message matches regex r

The with block logs on logger with
minimum level

New in

31

3.2
3.2

34

THE UNIVERSITY OF

WESTERN
Code Coverage: & AUSTRALIA

Testing is essential for reliable software, and we would like to have a set of test
cases, where any code that passes the test “works”

This means that any line of code that does not feature in at least one test case
is redundant to your notion of “works”.

There are different ways of measuring coverage: statement coverage, branch
coverage, logic coverage, path coverage. Statement coverage is sufficient for
our purposes, but you should always consider the ways your tests may be
deficient.

Coverage can be automatically measured by such tools as Coverage.py, and
HtmlTestRunner can be used to give visual feedback on a test run.

Coverage report: 37.59% Test ReSUIt

Module * Start Time: 2018-08-19 19:57:03

cogapp/__init__.py 2 0 0 0 0 100.00% Duration: 0:00:00

cogapp/__main__.py 3 3 0 0 0 0.00%

cogapp/backward.py 19 8 0 1 57.14% Status: Pass: 1, Fall: 1

COZApp/cOgapp.py 427 197 B 176 26 47.10% MyTestExample.MyTestExample Status
cogapp/makefiles.py 28 20 3 14 0 19.(Y ey P

(i est_coga 704 48¢€ 6 6 0 30.9

R LT < test_function_two (MyTestExample.MyTestExample)

cogapp/test_makefiles.py 55 55 0 6) 0.00%

cogapp/iest_whiteutls.py i > 0 by x test_function_one (MyTestExample.MyTestExample) [Fail JRVE
cogapp/whiteutils.py 45 3 0 32 3 92.21%

Total 1352 ol = Z & S70% Total Test Runned: Pass: 1, Fail: 1

System/User Tests

User testing is more challenging since it
depends on the end user environment.

Selenium can be used to automate
browsers to run test cases.

PhantomdJS is a headless browser that
can be used for testing with Selenuim,
without the overhead of running a GUI.

Selenium has two variations:
SeleniumIDE is a browser plugin that
can record interactions with a web-site
and run them back to confirm the
outcome remains the same.

Selenium WebDriver provides a set of
tools for scripting User tests.

| Eile Edit Options Help

Sast__Slow PE p=

\;J Dispatch_Order - Selenium IDE 1.0

| Base URL http://localhost:50398/

B e

THE UNIVERSITY OF

J@Y. WESTERN
%am? AUSTRALIA

Test Case Table | 5o rce‘
Login
Add new admin user Commani d Target Value
User_modify open /shop
PostZone_Add assertTitle Suteki Shop - Home
Country_Add clickAndWait link=Orders
PostageBand_Add_A assertTitle Suteki Shop - Order
PostageBand_Add_B lickAndWait link=1
PostageBand_Move_up_and_down assertTitle Suteki Shop - Order
Category_Add_Two verify TextPresen it Mike
Category_Move_up_and_down verifyTextPresent Can I have the Captain ...
Product_Add_Surprise clickAndW: link=Dispatch (and sen...
Product_Add_Victory verifyTextPresent Dispatched
Product_Edit_Surprise_Add_Images verifyTextPresent Hadlow
Product_Edit_Victory_Add_Images verifyTextPresent 5 Lovely Street
Logout erifyTextPresent Hove
Basket_Add_Surprise ifyTextPresent East Sussex
Basket_Add_Victory ifyTextPresent BN3 6BB
Basket_Remove_Victory rify TextPresent it United Kingdom
Checkout_complete
Login
Dispatch_Order
Comman d
Targ:

Runs: 21 Val
Failures: 0

Log Reference Ul-Element Rollup

[info] Executing: |assertTitle | Suteki Shop - Home | |

[info] Executing: |verifyTextPresent | admin@sutekishop.co.uk | |

[info] Changed test case

>z > [74>)

https:/iwww.google.com

Command

open

et window size

type
1 send keys

click

Target

1317x741

name=q

name=q

Value

how to selenium

${KEY_ENTER}

css=div:nth-child(3) > .g:nt
h-child(3) .LC20Ib

Selenium IDE

* Firefox/Chrome extension

e Easy record and replay

* Debug and set breakpoints

* Save tests in HTML, WebDriver and other Formats.

o Selenium saves all information in an HTML table
format

« Each record consists of:

« Command - tells Selenium what to do (e.g. “open’”,

» 13 ” 1

“type”, “click”, “verifyText”)

. Target — tells Selenium which HTML element a
command refers to (e.g. textbox, header, table)

« Value — used for any command that might need a
value of some kind (e.g. type something into a
textbox)

V¥ WESTERN
%am? AUSTRALIA

Selenium IDE 1.9.
File Edit Actions Options Help

Base URL | http://www.google.com/

fast Slow DE D_ \(\’
Test ... ﬁTable-1 Source
Untitled *
Command Target Value
Command | V \
— Target I Find

Runs: 0 | value |

Failures: 0

Log Reference | UlElement Rollup

clickAndWait(locator)
Generated from click(locator)

Arguments:
e locator - an element locator

(<] T)

How to record/replay with Selenium A S

IDE A &% AUSTRALIA

1. Start recording in Selenium IDE

1. Execute scenario on running web application

1. Stop recording in Selenium IDE Selenium

1. Verify / Add assertions

1. Replay the test.

... Or using webdriver you can integrate selenium with any unit testing
scripting language.

You can test functionality, responsiveness and general usability.

Selenium WebDriver

Selenium IDE is good for quickly
prototyping tests, but is not very good for
maintaining tests.

You can’t apply test fixtures easily and,
you need a running instance of the
application.

WebDriver provides a set of python
classes for interactioning with a browser.

We require a driver executable for each
browser we wish to test (Firefox, Chrome,
Edge, PhantomdJS).

The executable needs to be in the path, or
the current directory

We also need to set up our doubles. We
want a clean database for testing, so we
really need flask to be running in testing
configuration.

config.py 1,1

THE UNIVERSITY OF

W¥ WESTERN
%ams? AUSTRALIA

1 Emport 0s

2 basedir = os.path.abspath(os.path.dirname(__file_))
3

4 class Config(object):

SECRET_KEY = os.environ.get('SECRET_KEY') or 'ss

SQLALCHEMY DATABASE URI = os.environ.get('DATABASE_UR
S +os.path. JOln(basedlr app.db')
SQLALCHEMY TRACK_MODIFICATIONS = False

class ProducttonConflg(Conflg)
10 SECRET KEY = os.environ. get(SECRET_KEY')
11 # SQLALCHEMY D~T~E~ E_URI = Postgres remote
12
13 class DevelopmentConfig(Config):
14 DEBUG=True
15
16 class TestingConfig(Config):
17 SQLALCHEMY_DATABASE_URI = 'sqglite:
tests/test.db')
18 #SQLALCHEMY_DATABASE_URI =

+os.path.join(basedir,

'sqlite:///:memory:' #in memory da

ALl

app/__init__.py

flask import Flask

config import Config

flask_sqlalchemy import SQLAlchemy
1 flask_migrate import Migrate

flask login import LoginManager

app = Flask(__name_)

app.config.from_object('confic
db = SQLAlchemy(app)
migrate = Migrate(app, db)
login = LoglnManager(app)
login.login_view =

from app import routes,models

Emport unittest, os, time

from app import app, db

from app.models import Student, Project, Lab
from selenium import webdriver

#To do, find simple way for switching from test context to development to production.

NV A WN =

Running Selenium Tests

class SystemTest(unittest.TestCase):
driver = None

def setUp(self):
self.driver = webdriver.Firefox(executable_path=r'

In the TestingConfig, we have a new 2013) LS540 pat-up geckodr iver

if not self.driver:

database, test.db, that always starts setf skiprest(

else:
db.init_app(app)

empty so our tests are repeatable. db.create aL()

s1 = Student(id= 222 ,first_name='Test',surname='Case’',cits3403=True)
s2 = Student(id='11111111',first_name='Unit',surname='Test',cits3403=True)

The tests can be run by unittest, even e e i

’ . db.sess?on.add(sz)
though they’re not unit tests. 3:;':::::3:‘22:,;}3*;;
self.driver.maximize wlndow()
self.driver.get(’ ¢

def tearDown(self):

In our setUp we create a selenium
web driver for Firefox, enter dummy it drtver ctoseq

db.session.query(Student).delete()
db.session.query(Project).delete()

data to our databases, and navigate to db:sess ton.query(ah) . detete()
3 db.session.remove()

the app’s page. et muery. et 22222222

The test is executed by describing the Cevr driver - gec(nitp.//ocathost: 5090, regtster)

self.driver. 1mp11c1t1y_walt(,)

H H H H num_field = self.driver.find_element_by_1id(

iInteractions selenium has with the Run_TLetd. send keys (. 22352203)
pref_name = self.driver.find_element_by_1id(

f_i - d_keys('Testy')

Web page. 2;:_&2”: :Qf.dig\s/er.find_element_by_id(

new_pin.send_keys(
. . . . new_pin2 = self.driver.find_element_by_1id(
in2. d_k

This is specified via DOM elements, Tene sraepcy o0

self.driver.implicitly_wait(5)

and selenium offers different methods o gy L lenent by _ta(

#check login success

for simulating events. T DR R

logout = self.driver.find_element_by partial_ ltnk text(
self.assertEqual(logout.get_attribute(erHTML'), 'L

unittest. maln(verbostt =2)
tests/systemtest.py

Navigating with Selenium

You need to design your web pge
so that all elements are accessible.
And have a fixed id, so the tests are
robust if the page layout changes.

Selenium can enter information in
forms, click on elements and drag
and drop etc

You can extract information by
searching for text or accessing the
attributes of HTML elements.

An standard assertion library can
be used to confirm that the page
behaved as expected.

continue link
continue link

WESTERN
%am? AUSTRALIA

from selenium.webdriver.support.ui import Select
select = Select(driver.find element by name('name'))
select.select by index(index)
select.select by visible text("text")
select.select by value(value)

element = driver.find element by name("source")
target = driver.find element by name("target")

from selenium.webdriver import ActionChains
action chains = ActionChains(driver)
action chains.drag and drop(element, target).perform()

e find_element by 1id

e find_element_by name

e find_element_by_xpath

e find_element_by_link_text

e find_element_by_partial_link_text
e find_element_by_tag_name

e find_element_by_class_name

e find_element_by_css_selector

driver.find element by link text('Continue')
driver.find element by partial link text('Conti')

WESTERN
Running the Selenium Tests W& AUSTRALIA

« To run the Selenium tests, you need to have
the flask app running in TestingConfig. Pair Up!

* You execute the tests as with unittest CITS3403 group allocation tool, and

* python -m tests.systemtest Register

Student Number

22222222

Prefered Name

Testy
New Pin
Confirm Pin
virtual-environment) drtnf@drtnf-ThinkPad:$ python3 -W ignore -m tests.systemtest
est_register (__main__.SystemTest) ... 127.0.0.1 - - [01/May/2019 13:21:59] "GET / HTTP/1.1" 200
.0.0.1 - - [01/May/2019 13:21:59] "GET /static/bootstrap.min.css HTTP/1.1" 200 -
A - - [01/May/2019 13:21:59] "GET /static/bootstrap.min.js HTTP/1.1" 200 - Sign up
e - [01/May/2019 13:21:59] "GET /static/bootstrap-theme.min.css HTTP/1.1" 200 -
SGe - [01/May/2019 13:22:00] "GET /favicon.ico HTTP/1.1" 404 - Written by Tim, 20
e - [01/May/2019 13:22:00] "GET /register HTTP/1.1" 200 - ’
0. - [01/May/2019 13:22:01] "POST /register HTTP/1.1" 302 -
(e - [01/May/2019 13:22:01] "GET /index HTTP/1.1" 200 - ng up localhost...

test in 11.748s

