
Topic 12: Testing

CITS3403 Agile Web Development

Semester 1, 2023Getting MEAN with Mongo, 
Express, Angular and Node, 
Chapter 11



• Writing a bug free application is critical to to success of that application.
• There are various ways to eliminate bugs.

– Code inspections: having peers critically examine your code and make 
suggestions.

– Formal verification: building precise specifications of correctness, and proving 
the code meets these specs.

– Testing: Providing test cases of inputs and actions, and expected behaviors.
• Testing is a key activity in any software development, but particularly in agile 

development, where the test suites are a proxy for requirements documentation.
• Test Driven Design specifies that the tests should be written first, and the code 

designed specifically to pass those tests.
• Agile also relies heavily on test automation, so that every sprint or iteration can 

be checked against the existing test suite.

Verification and Validation



• The V-model links types of tests to stages in the development process.
• We will focus on unit tests and system tests.

The V-model



• Unit Tests: test each individual function for to ensure it behaves correctly 
(2-5 tests per function)

• Integration Test: Execute each scenario  to make sure modules integrate 
correctly.

• System Test: Integrate real hardware platforms.
• Acceptance Test: Run through complete user scenarios via the user 

interface.

The tests should be repeatable, and should have a clear scope. Any changes 
to anything outside that scope should not affect whether the test passes.

To isolate the system under test (SUT) from external systems, we use test 
doubles: fakes, stubs and mocks. 

Types of test



• Fakes are objects with working 
implementations, but not the same as the 
production environment. In the diagram, the full 
database has been replaced by an object 
wrapping a hashmap.

• A stub is an object that holds predefined data to 
respond to specific requests. For example, To 
test the login GUI, we could provide a stub that 
accepts only the password ‘pw’ regardless of 
the user.

• Mocks work like stubs but they register the calls 
they receive, so we can assert that the correct 
action was performed, or the correct message 
was sent. In the example, a door mock is used 
to verify that the close() methoid was called, 
without interacting with hardware.

Test Doubles



• In python, unit testing is most commonly done with the module unittest.
• This provides a number of classes and functions;

- Test fixtures: These are the methods to prepare for a test case, called 
setUp and tearDown. 

- TestCase: This is the standard class for running a test. It specifies the setUp, 
tearDown, and a number of functions to execute.

- TestSuite: Running comprehensive tests is expensive, so often you don’t 
want to run every test case. Test suites allow test cases to be grouped 
together to be run at once.

- Test Runners: These run the tests and report the reuslts

Unit Test Structure 

• Typically you only have to write the test 
cases, and the rest is automatic.



• To write some basic unit tests, we 
should import unittest, and the 
modules/classes under test.

• We then subclass TestCase for each 
unit we want to test.

• We specify the setUp for each test (e.g. 
populating a dummy database, or 
creating instances), and the tearDown
after each test (e.g. resetting the 
database).

• Flask has a method test_client() to run a 
sandboxed version of the app.

• We then specify a set of tests. These 
must begin with ‘test’, and use the 
assert methods to define whether the 
test passes

• python unittest <filename>

Writing some simple tests:



• Assertions describe the checks the 
test performs. They can be 
supplemented with messages to give 
diagnostic information about the failing 
cases.

• Each test can have multiple 
assertions, and the test only passes if 
every assertion is true.

• We can also assert that an exception 
or a warning is raised. If the exception 
is raised, then the test passes.

• There are many other assertion 
libraries that can be imported and 
produce more readable test cases, 
such as assertpy 

Assertions:



• Testing is essential for reliable software, and we would like to have a set of test 
cases, where any code that passes the test “works”

• This means that any line of code that does not feature in at least one test case 
is redundant to your notion of “works”.

• There are different ways of measuring coverage: statement coverage, branch 
coverage, logic coverage, path coverage. Statement coverage is sufficient for 
our purposes, but you should always consider the ways your tests may be 
deficient.

• Coverage can be automatically measured by such tools as Coverage.py, and 
HtmlTestRunner can be used to give visual feedback on a test run.

Code Coverage:



• User testing is more challenging since it 
depends on the end user environment.

• Selenium can be used to automate 
browsers to run test cases.

• PhantomJS is a headless browser that 
can be used for testing with Selenuim, 
without the overhead of running a GUI.

• Selenium has two variations: 
SeleniumIDE is a browser plugin that 
can record interactions with a web-site 
and run them back to confirm the 
outcome remains the same.

• Selenium WebDriver provides a set of 
tools for scripting User tests.

System/User Tests



Selenium IDE

• Firefox/Chrome extension
• Easy record and replay

• Debug and set breakpoints
• Save tests in HTML, WebDriver and other Formats.
l Selenium saves all information in an HTML table 

format
l Each record consists of:
l Command – tells Selenium what to do (e.g. “open”, 

“type”, “click”, “verifyText”)
l Target – tells Selenium which HTML element a 

command refers to (e.g. textbox, header, table)
l Value – used for any command that might need a 

value of some kind (e.g. type something into a 
textbox)



How to record/replay with Selenium 
IDE
1. Start recording in Selenium IDE

1. Execute scenario on running web application

1. Stop recording in Selenium IDE

1. Verify / Add assertions

1. Replay the test.
... or using webdriver you can integrate selenium with any unit testing 
scripting language. 
You can test functionality, responsiveness and general usability.



• Selenium IDE is good for quickly 
prototyping tests, but is not very good for 
maintaining tests. 

• You can’t apply test fixtures easily and, 
you need a running instance of the 
application.

• WebDriver provides a set of python 
classes for interactioning with a browser.

• We require a driver executable for each 
browser we wish to test (Firefox, Chrome, 
Edge, PhantomJS).

• The executable needs to be in the path, or 
the current directory

• We also need to set up our doubles. We 
want a clean database for testing, so we 
really need flask to be running in testing 
configuration.

Selenium WebDriver



• In the TestingConfig, we have a new 
database, test.db, that always starts 
empty so our tests are repeatable.

• The tests can be run by unittest, even 
though they’re not unit tests. 

• In our setUp we create a selenium 
web driver for Firefox, enter dummy 
data to our databases, and navigate to 
the app’s page.

• The test is executed by describing the 
interactions selenium has with the 
web page.

• This is specified via DOM elements, 
and selenium offers different methods 
for simulating events.

Running Selenium Tests



• You need to design your web pge 
so that all elements are accessible. 
And have a fixed id, so the tests are 
robust if the page layout changes. 

• Selenium can enter information in 
forms, click on elements and drag 
and drop etc 

• You can extract information by 
searching for text or accessing the 
attributes of HTML elements.

• An standard assertion library can 
be used to confirm that the page 
behaved as expected. 

Navigating with Selenium



• To run the Selenium tests, you need to have 
the flask app running in TestingConfig.

• You execute the tests as with unittest
• python -m tests.systemtest

Running the Selenium Tests


