
Topic 12: Connecting 

Express and Mongo
CITS3403 Agile Web Development

Semester 1, 2018Getting MEAN with Mongo, 

Express, Angular and Node, 

Chapter 5 and 6



Node and Mongo

• There are several ways to connect an express application
to a mongo database.

• From you can install mongodb from npm which gives a set
of functions to access a mongo database directly.

It is important 
to use callbacks 
correctly here, 
so you don’t 
close a 
connection that 
is being used.



Mongo and Express

Mongo is a document database, with no enforced 

schema, so we need a model to enforce data integrity.

For this we will use mongoose. 

Node

Express

webserver

PORT

Jade Views

Mongoose Models

Client

HTML/CSS

JS

AngularMongo DB



Mongoose

• Mongoose wraps the functionality of the mongodb

database in a model, making it easy to work with.

• Mongoose allows us to define models and schemas,

and saves us writing validation code.



Installing Mongoose

• Add Mongoose to the

application using npm.

• This makes mongoose

available throughout 

the express app.

• We need to

1. connect to a database

2. build schemas for the

models

3. write and read data

from mongo.



Connecting to the database

• Connecting to a database takes time, so mongoose

tries to reuse connection where possible.

• We will setup the connection in the models directory.

• The connection will be
in a file db.js that we

will then be able to

import into the other
models.

• We can require this file
in the app.js file so

the connection is

made as soon as the
app starts.



Modeling the data

• Even though Mongo does not require structured

data, good design still requires data schemas.

• If we consider the users of our system, they should

have:

– a name (string, must be there),

– an age (optional, an integer),

– a list of chores (essential, but could be empty),

– maybe a picture…

• Everytime we read and write data to the database

we would like to enforce these constraints.



Mongoose Models

• Mongoose is an Object Document Modeler (ODM,

not ORM). It provides an interface to the database

from the application.

• In MongoDB each entry in

a database is called a

document.

• In MongoDB a collection of

documents is called a

collection.

• In Mongoose the definition

of a document is called a

schema.

• Each individual data entity

defined in a schema is

called a path.



Mongoose Schemas

• A mongoose schema allows you to define the fields

of your model and specify the constraints on those

fields.

• Like Mongo

Documents they can

be nested.

• A sample object in our

application may look

like this.

• We can use this sketch

to define a schema.



Schema specification

• A schema specification gives the data type and

constraints of each field in the system.

• The following file, minion_model.js can specify

the schema:

• If we require

this file at the
end of db.js

then the

model will be

bought into

the whole
application.



Compiling Schemas into Models

• To build a model from a schema, mongoose needs to

know the name of the model, the schema to use, and

the collection in the database to use.

• mongoose.model(‘Minion’, minionSchema, minions)

• You can place this line after

the schema definition in
minion_model.js

• You are then able to create

new models of Minions

throughout the app.




