
Topic 11:
Authentication
CITS3403 Agile Web Development

Semester 1, 2022Reading: The Flask Mega-Tutorial
Miguel Grinberg
Chapter 5

• Security is a primary concern for anyone developing web
applications.

• Data access must be controlled, passwords must be
validated securely, and users just be able to trust the
information presented to them.

• Complete security is very hard to achieve and beyond
the scope of this unit, but basic authentication is
relatively easy.

• An interesting case study of internet security is
Anonymous’s attack on HBGary:

arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack/

Secure web apps

http://arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack/
http://arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack/
http://arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack/
http://arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack/

Web security makes use of the following basic
concepts
• Public Key Encryption (eg RSA)

– A public-private key is 2 functions pub and priv so that x = priv(pub(x)) and given that
you know pub, priv is hard to work out.

– Public Key Encryption can be used for authentication. I can compute and publish pub(x)
and only someone who knows priv can tell me what x is.

– Public Key Encryption can be used for digital signatures. The pair (x, priv(x)) can be
verified by anyone, but only created by some who knows priv.

– Key distribution. A random key x can be generated and pub(x) can be sent to someone
who knows priv. Then the pair knows x, but no body else does (even if they have been
eaves dropping

• Hashing (eg MD5)
– Secure hashing computes a large number from a stream of data, in such a way that it’s

very difficult to fabricate data with a certain hash.
– Different to hashing used for Hash tables etc.

Web security basics

• HTTP is stateless, so the server does not
remember the client.

• For a secure session, every request needs
to be authenticated... thankfully there are
protocols to help here.

• SSL (secure sockets layer) wraps up the
public key encryption process to enable a
secure transaction.

• To use SSL we need to use the HTTPS
protocol, which requires a signed
certificate to allows users to trust the
server.

• This prevents anyone from intercepting
traffic from reading its contents.

Secure web session

• Web session security is managed through cookies and tokens.
• Cookies are packets of data stored in the browser.

– Session cookies can record a users interaction with a site, persistent remain in your browser
and allow sites to track your browsing habits.

– Cookies consist of a name, a value and a set of attribute value pairs (e.g. expiration).
– Cookies can be created and managed through javascript: document.cookie=“trackme:

false”;

– Cookies are sent from the server to the browser:

Cookies and Tokens

• Authentication tokens allow you to store user
privaleges in JWT, (JSON web tokens), or
other formats.

• These tokens, once granted are submitted
with web-requests to verify identities.

Authentication and session management

l To manage users, a database can store user
data and password hashes. Unverified users
are required to enter login details before a
secure session commences.

l When we verify a users credentials against
the database, the application can remember
that all requests associated with that session
come from the specified user.

l Therefore HTTP is stateless, but the
application is not, and it can track the state
(and authority) of every user that is logged
in.

l Flask provides some basic tools for session
management.

• Web security depends on trust.
There are several elements to this:

1. The web server needs to be
confident that someone
accessing data is authorised.

2. The user needs to know that
the site they are visiting is the
one they intend to.

3. Both the server and the client
need to be confident that no
one in the middle is accessing
unauthorised data.

• 2 is typically handled by browsers,
and 3 is achieved with https (week
11). In this lecture we’ll focus on 1.

Elements of Web-security

• To track a users identity we need to
have them register so we can
associate a user name with them.

• When someone uses an application
a session is maintained via a
variable held by the web-browser.

• When someone logs in they provide
a password. This is salted and
hashed to provide a digest which
can compared to a hash in a
database (keeping the password
secure).

• Once the user is authenticated, they
will be be served there requested
pages, and their id will be a
parameter of the requests.

• In previous lectures we have looked at the MVC architecture, and linked
in a simple database which contains a table of users.

• To add in authentication, we need every user to have a unique user id
and a password, but we only want to store password hashes.

• The python package werkzeug (a part of flask) can handle the hashing.

Adding authentication to Flask apps

• The password management
can now be added to the User
model, using werkzeug to
generate and verify hashes.

Flask Login Manager

l Flask-Login is a package that will
automatically track secure sessions. It
requires the User model to implement a
number of methods and properties for
checking if the user is authenticated,
what their id is, etc.

l This functionality can be achieved by
using the UserMixin, which
implements those methods for you.

l As Flask-Login is agnostic to the
database or ORM, we need to tell flask
how to load a user.

l The decorator @login.user_loader
is for the method that maps an id to a
user.

Using Flask-Login
l Flask-Login provides a methods
login_user, logout_user and a
variable current_user (possibly
anonymous) to manage sessions.

l login_user will set current user to the
specified user model.

l current_user has a method
is_authenticated to check if they
have provided login credentials.

l We also use a decorator
@login_required from Flask-
Login to label the routes that require a
login.

l Finally, in app/__init__.py, an
instance of LoginManager is created,
and the login_view is set to the route
login.

Updating the views

l We can now use the current_user
variable in the templates we have built.

l The current_user properties can be
used to guard components of the web
page that you only want logged in
users to see, or to personalise the web
page.

• This type of authentication works well for web based sessions, but has a number
of drawbacks.

- It requires the application to track all user sessions which may not scale well.

- HTTP requests are sent in plain text, and passwords should never be
transmitted or stored in plain text.

- The web is not only access through a browser, so how can we authenticate
without sessions?

• JSON Web Tokens provide an alternative where a token is granted to a client,
and the client must submit that token with every request.

• An added bonus is that using OAuth, external providers can check and grant
tokens.

Alternative authentication methods

• OAuth (now OAuth2) was developped by Twitter to allow applications to
authenticate and interact with Twitter, without requiring repeated logins.

• Oauth verifies a users identitiy and provides a JSON Web Token (JWT). This
contains a header, a payload and a signature in compressed JSON.

• This header describes the encryption type, the payload typically provides some
user identifier, an expiry and issuer information, and the signature is a secure
hash, proving the token wasn’t tampered with.

OAuth and JWT

• You can configure flask to serve JWT
tokens to clients, and verify those
tokens, rather than checking session
cookies with the flask_oauth module.

• However, you can also have 3
rd

parties
like Google and Twitter, provide the
tokens and do the validation.

• This saves you having to manage
senesitive user data.

• The web application used
session based authentication,
but there is no such session
cookie for a REST API.

• Instead a token is granted to the
user when they provide
credentials, and requests
augmented with that token user
are assumed to come from the
user.

• g is a context object that comes
with each HTTP request

Authentication with passwords and tokens

• The HTTPBasicAuth module
is for verifying passwords in a
request, which will grant a
token.

• Then the HTTPTokenAuth
can do token based
authentication

• We need to update our User
models so that the temporary
token is kept in the database,
as well as the password hash.

• When making changes to the
models, remember to upgrade
and migrate the changes to
the database

Authentication with passwords and tokens

• To interact with a REST API,
you can use a browser for
GET requests, but others are
not trivial

• The python package HTTPie
can be used to send requests
and receive responses.

• There are also graphical user
interfaces, such as Postman
for sending, receiving and
testing in HTTP

Interacting with the REST API

