
Topic 11: MongoDB

CITS3403 Agile Web Development

Semester 1, 2018Getting MEAN with Mongo,

Express, Angular and Node,

Chapter 5, and

www.tutorialspoint.com/mongodb

Mongo DB

• MongoDB (from humongous) is a free and open-source
cross-platform document-oriented database.

• Classified as a NoSQL database, MongoDB avoids the
traditional table-based relational database structure in
favor of JSON-like documents with dynamic schemas.

• As of July 2015, MongoDB is the fourth most popular type
of database management system, and the most popular
for document stores.

Document databases

Document databases don’t have tables or schemas.

Instead, they consist of Collections of Documents.

Each document in a collection may have different

fields.

The fields of a document can be another document (a

sub-document), but two documents cannot share a

subdocument. i.e it is a tree

In Mongo, each document is represented as a JSON

object.

Databases, Collections and Documents

• Database - Database is a physical container for collections.

Each database gets its own set of files on the file system.

• Collection - Collection is a group of MongoDB documents. It

is the equivalent of an RDBMS table. A collection exists within

a single database. Collections do not enforce a schema.

• Document - A document is a set of key-value pairs.

Documents have dynamic schema. Dynamic schema means

that documents in the same collection do not need to have

the same set of fields or structure.

Mongo vs RDBMS

Sample document

• Below is a sample document. Every document has

an id.

• The document is a

javascript object.

• Any relational

database has a

number of tables and

their relationships.

• In MongoDB there is

no concept of

relationship

“Advantages” of Mongo

• Mongo is schema-less: different documents in a

collection can have different fields.

• Documents are objects: saves conversion logic.

• No complex joins. No joins at all.

• Deep query ability: document based query language.

• Tunable and scalable.

… but

• data should be tree like.

• joins need to be done outside the database.

Initialising Mongo

• To start mongo, you need a directory to hold the

data, and a port to serve the data.

• Create a sub-directory data and then start the

mongo daemon: mongod –dbpath data

• this creates a set of files in the data directory, and

starts a process listening on port 27017

• Other processes can

now create and

access databases

through this port

• e.g. mongo shell

Database as a service

• We will be using mLab as a free database as a

service. This provides minimal instances hosted in

the cloud.

Using mLab

• You can remotely access mLab instances…:

• …and access them

through a shell

environment.

Getting started – Mongo shell

• Once the daemon is running, you can access the

database using the mongo shell.

• type mongo at the command line

• use <db> will allow you to access or create a database

• the command db, shows the current database; show dbs

shows all the databases.

• To insert you use
db.<collection>.insert(<JSObj>)

• To remove a datbase: db.dropDatabase()

• To stop the daemon: use admin, then

db.shutdownServer()

Adding data

• To create a new collection:
db.createCollection(<name>, <options>)

• Remove a collection: db.<cName>.drop()

• To insert a document: db.<cName>.insert(<doc>)

Mongo data types

Querying data

• Use db.<cName>.find() to return all documents

in a collection.

• Use db.<cName>.find().pretty() for nice

formatting.

• To find particular

documents, you can

test fields.

• A list of constraints

will return their

intersection (AND)

OR in mongo

• TO find the union of two constraints use $or:

• AND and OR can be nested.

Update a document

• Databases typically need to support the CRUD

operations (create, read, update, delete)

• For updates we use
db.<cName>.update(criteria,data)

• You can also
use the save

to update a

document,

given its

document id.

Delete

• To delete documents from a collection, you use:
db.<cName>.remove()

• You can provide a criteria for the documents to

remove, in the same way they are specified in the

find method.

Projection

• To project to a subset of fields, you can use an
optional parameter in the find method.

• When two objects are given as a parameter, the first

is the query constraint, the second is the fields you

want returned (1 to return, 0 to not)

Limiting and Sorting

• limit(n) and skip(n) can be used in

conjunction with find to return (or skip) the first n

results.

• Similarly sort({key:1}) acts on the object

returned by find to sort according to the given key

(1 for ascending, -1 for descending).

Indexing

• In order for Mongo to efficiently search a collection, it

needs the fields to be indexed. Otherwise it has to

iterate over the entire collection.

• Use db.<cName>.createIndex({key:1}) to

create an index for fast searching (-1 for reverse
order).

• Constructing the index can be time-consuming so

there are options to optimise how the index is built

and used.

Aggregation

• Aggregation operation process records and return

computed results.

• db.<cName>.aggregate([{$group:{…}}])

• There are many options:

