Topic 10:
Model-View-Controller

CITS3403 Agile Web Development

Semester 1, 2023

Architectural Patterns 2" WESTERN

* Design patterns describe re-useable design concepts, particularly in
software. They describe how objects are organized to call each
other.

 Examples are client-server architecture, pipe and filter, and
blackboard architectures.

* Some specific patterns that apply to web applications are Model
View Controller, Boundary Control Entity, 3-Tier Architecture and
Model View View-Model.

Fully
transformed

Incoming message

message Message queue Filter A
Control {%D
oS0
3-Tier Architecture Model-View-Controller
]-

Controller 8
- \

Blackboard Knowledge Sources

blackboardNodes | operates on 1+ | updateBlackboard()

wec Condition()
ccccc ss0) 1 R
update() mecAction) Logic Tier

Model View Controller A& AUSTRALIA

The model view controller patter is one of the most popular for
server side web applications.

The model refers to an object referencing an entity in a database.
The view is how that object is presented to the user.

The controller is a linking class that builds the model from the
database, prepares the view based on the model, and the updates
and saves the models back to the database.

controller

receive, interpret & validate input;
create & update views;
query & modify models

: : WESTERN
Model View ViewModel A& AUSTRALIA

Model View View-Model is a variation of model view controller that

is tailor for client side applications and single page applications.
Rather than having a controller compose the view a binder links the

view to a viewmodel.
The view presents thethe current state of the viewmodel

The viewmodel exposes the data and available operations of the
model, and updates the model as required.

Two way data-binding links the view and viewmodel without need
to link back to the server.

— |

= = -

View — ViewModel
DataBinding

Process
Presentation and Presentation Logic BusinessLogicandData @

By Ugaya40 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19056842

Designing an MVC structure A& AUSTRALIA

We will focus on the MVC architecture as it is most suitable for web
applications with server side rendering.

To design an MVC solution architecture, you need to identify what
models, views and controllers you require.

Recall user stories are simple representations of software requirements.

In every user story, we can identify nouns which could be models, verbs
which could be routes, and associate a view for the specified user.

We can then mock up wireframe sketches of view and mock http
requests and responses.

Backlog Item (User Story) Story Point
As a Teller, | want to be able to find clients by last name, so that | 4
can find their profile faster
As a System Admin, | want to be able to configure user settings so 2
that | can control access.
As a System Admin, | want to be able to add new users when 2
- required, so that... }
As a data entry clerk, | want the system tQ automatically check my 1
spelling so that...

THE UNIVERSITY OF

M WESTERN

Mock Websites & AUSTRALIA

Wireframe drawing show the basic layout and functionality of a user interface.
There are various tools for building these, or you can draw them by hand.
A series of wire frame mocks can show the sequence of interfaces used in an

application.

You can also mock the typical http requests and responses your app will serve.
These can be hard coded using tools like Apiary and Mocky (more on this later)

— 14F - Directory Profile Page

Profile Name

Categories
245 Blackfriars Road Lorsm e
45 Blackfriars dolor sit
Ludgate House amet
London, SE1 9UY dolor sit
Email: firstname@surname.com
Telephone: 0207 955 3705
Lorem |p um dolor sit amet, elit. Morbi nibh
feugiat urna elementum facilisis. Nullam dlam arcuy, lobortis ut tincidunt vel, suscipit
quis le fusPaeserrdumspI n in nisi tempor vestibulum. Mauris nec mauris
saplen. Nam laoreet nisi non magna laculis vitae convallis lorem porttitor.
Lorem ipsum dolor sit amet, elit. Morbi nibh

feugiat urna
quis lectus. Praesent interdum sapien in nisi tempor vestibulum. Mauris

elementum facilisis. Nullam diam arcu, lobortis ut tincidunt vel

|, suscipit

nec mauris

XX
XX

Q==X

Polls API

Questions Collection [/questions]

List A1l Questions [GET]

+ Response 200 (application/json) . .

{ Questions Collection
"question":
"published_at":
"choices": [
{

"Favourite programming language?",
"2015-08-05T08:40:51.620Z",
List All Questions

"swift",
2048

"choice":
"votes":
3 o
"choice":
"votes":
A
"choice":
"votes":

Create a New Question

"Python",
1024

"Objective-C",
512
}
]
}
]

Create a New Question [POST]

Implementing Models A& AUSTRALIA

A model is an object that is paired with an entity in a database.

There is an Object Relational Mapping (ORM) linking the data in the
database to the models in the application.

The models are only built as needed, and update the database as
required. Most frameworks include ORM support.

To build the models, we first need to set up the database.

There are relational databases, document databases, graph
databases,and others

We will focus on relational databases and particularly SQLite, but
we will discuss alternatives.

RELATIONAL VS. NON-RELATIONAL DATABASES work-

— T T "“—«\
A non-relational database BLOG POST

Blog Post Blog Tags does not incorporate the \
= table model. Instead, data c
< can be stored in a single
| document file.

mmmmmmm Tags

<~
™

< p
| _ A relational database table

................. organizes structured data

fields into defined columns.

: WESTERN
Relational Databases A& AUSTRALIA

 Relational databases store data as a set of relations, where each
relation is represented as a table.

* Each row of the table is an entity, and each column of the table is
an attribute of that entity.

* Every relation has an attribute that is unique for every entity in that
relation, called the primary key.

* Some relations attributes that are primary keys in other relations.

These are called foreign keys.
users posts

. id INTEGER id INTEGER
Attribute I e —"
e m— username VARCHAR (64 body JARCHAR (14
email VARCHAR (12 timestamp DATETIM
user_id INTEGEH

password_hash VARCH

Tuple{

v

Relation

. WESTERN
Setting up a database A& AUSTRALIA

 The DataBase Management System DBMS is an application that
controls access to a database.

A database is created, and then we set up schemas for the tables

 The schema of the database is the set of tables (relations) that are
defined, the types of the attributes, and the constraints on the
attributes. This is the meta-data of the database and is not
expected to change in the normal usage of the application.

 SQLite commands start with a ” and can display the metadata

.hel ") to see a” COITIHIandS sqlite3 c:\sqlite\sales.db
drtnf@drtnf-ThinkPad:$ sqlite3 app.db SQLite version 3.13.0 2016-05-18 10:57:30
SQLite version 3.22.0 2018-01-22 18:45:57 Enter ".help" for usage hints.

Enter ".help" for usage hints. .

sqlite> .database sglite

main: /Dropbox/ArePricks/Dropbox/Tim/teaching/2019/CITS3403/pair-up/app.db

sqlite> .table Tc T

alembic_version 1labs projects students CREATE .ABLEVcontact_groups (
sqlite> .schema projects contact_id integer,

CREATE TABLE projects (group_id integer,

project_id INTEGER NOT NULL,

description VARCHAR(64), PRIMARY KEY (contact_id, group_id),

lab_id INTEGER, FOREIGN KEY (contact_id) REFERENCES contacts (contact_id)
PRIMARY KEY (project_id), . - S . - . TTON
FOREIGN KEY(lab_1id) REFERENCES labs (lab_id) ON DELETE CASCADE OP_J UPDATE NO ACTION, _

); FOREIGN KEY (group_id) REFERENCES groups (group_id)

sqlite> .indexes ON DELETE CASCADE ON UPDATE NO ACTION
sqlite_autoindex_alembic_version_1 sqlite_autoindex_students_1 .

sqlite> .exit)

drtnf@drtnf-ThinkPad:$ [J

. WESTERN
Relational Query Language gﬁ; AUSTRALIA

The basic operations of any database system are Create, Read, Update and

Delete (CRUD). The sequential query language (SQL) provides the syntax for
performing these operations:

. .] Operation SQL HTTP RESTful wWs DDS
Create is done using an insert statement (... INSERT | PUT/ POST bosT write
H H Read (Retrieve) | SELECT | GET GET read / take
Read is done using the select statement
Update (Modify) | UPDATE | PUT / POST / PATCH | PUT write

Update is done using an update statement oeiete oestroy) peLeTe pELETE DELETE | dispose
Delete is done using a delete statement. o (GELECT) o

INSERT INTO tablel (UPDATE table

columni, SET column_1 = new_value_ 1,

column2 ,..) column_2 = new_value_2 "(FROM tab'&o'subq uery
VALUES WHERE

(search_condition

valuel, ORDER column_or_expression

value2 ,...); LIMIT row_count OFFSET offset;
SELECT DISTINCT column_list DELETE (Growp) @
FROM table_list FROM @

JOIN table ON join_condition table
WHERE row_filter WHERE »(wmoow)--((window-name)-»(_AS)
ORDER BY column search_condition; O
LIMIT count OFFSET offset
GROUP BY column

HAVING group_filter; ©))

OO
—

Fo=gney 1HE UNIVERSITY OF

o WESTERN

N OSQL AUSTRALIA

 NOSQL standards for not only SQL, and describes non-relational
databases.

 These can be very useful in some applications, but RDMS are still be
far the most popular and general approach.

All in the NoSQL Family

NoSQL databases are geared toward managing large sets of varied and frequently updated data, often in distributed systems or the
cloud. They avoid the rigid schemas associated with relational databases. But the architectures themselves vary and are separated
into four primary classifications, although types are blending over time.

Document

databases

Store data elements in
document-like structures that
encode information in formats

such as JSON.

+
Common uses include content

management and monitoring
Web and mobile applications.

+
EXAMPLES:

Couchbase Server, CouchDB,
MarkLogic, MongoDB

Graph
databases

Emphasize connections
between data elements,
storing related “nodes” in

graphs to accelerate querying.

+

Common uses include
recommendation engines and
geospatial applications.

+

EXAMPLES:
Allegrograph, IBM
Graph, Neo4j

‘j’ Key-value
databases

Use a simple data model that
pairs a unique key and its
associated value in storing
data elements.

+
Common uses include
storing clickstream data and
application logs.
+
EXAMPLES:

Aerospike, DynamoDB,
Redis, Riak

Wide column

stores

Also called table-style
databases—store data across
tables that can have very
large numbers of columns.
+

Common uses include
Internet search and other
large-scale Web applications.

+
EXAMPLES:

Accumulo, Cassandra, HBase,

Hypertable, SimpleDB

. ° - Fo=g==y 1HE UNIVERSITY OF
Linking Models into an App %, WESTERN

Now we have a database setup, we would like to link it into our
application. We will use SQL-Alchemy for ORM with SQLite. Alternatively,
we could use pymongo with Mongo or py2neo with Neo4J.

We need toinstall flask-sglalchemyand flask-migrate
We will keep the database in a file called app . db, in the root of our app,
and include thisin config.py

Next we update init .py to create an SQLAlchemy object called
db, create amigrate object, and import a module called models
(which we will write)

The model s classes define the database schema.

config.py: Flask-SQLAIchemy configuration app/__init__.py: Flask-SQLAIchemy and Flask-Migrate initialization

Fo=g==y 1HE UNIVERSITY OF
SQLAlchemy Models V¥ WESTERN

¥ AUSTRALIA

* To build a model we import db (the instance of SQLAlchemy) and
our models are then all defined to be subclasses of db.Model

* To see what these modules are doing, you can find the source code
in the virtual environment directory.

e db.Column is a class used to specify the type and constraints of
each column in the table.

e db.relationshipis afunction that defines attributes based on

self.use_native_unicode = use_native_unicode

a database relationship.

"irtual-environment/1ib64/python3.6/site-packages/flask sqlalchemy/ 1init

self.Query = query_class
self.session = self.create_scoped_session(session_options)

self.Model = self.make_declarative_base(model_class, metadata)
self._engine_lock = Lock()

self.app = app

_include_sqlalchemy(self, query_class)

if app is not None:
self.init_app(app)

@property
def metadata(self):

-y

Integer an integer

String(size) a string with a maximum length
(optional in some databases, e.g.
PostgreSQL)

Text some longer unicode text

DateTime date and time expressed as Python
datetime object.

Float stores floating point values

Boolean stores a boolean value

PickleType stores a pickled Python object

LargeBinary stores large arbitrary binary data

class Person(db.Model):
id = db.Column(db.Integer, primary key=True)
name = db.Column(db.String(50), nullable=False)
addresses = db.relationship('Address', backref='person', lazy=True)

class Address(db.Model):
id = db.Column(db.Integer, primary key=True)
email = db.Column(db.String(120), nullable=False)
person_id = db.Column(db.Integer, db.ForeignKey('person.id'),
nullable=False)

Database Initialisation A& AUSTRALIA

app/models.py: Posts database table and relationship

This allows us to define the database schema,
but we still need to link it to the database.
Flask provides some utilities to do this.

flask db init willinitialise a database to
synchronize with the models you have defined.

flask db migrate will use alembic to
create a migration script that applies changes
to the datatbase.

flask db upgrade applies that script to
the database (and downgrade to roll the
changes back.)

This allows us to keep the database schema
and the models in sync.

Alchemy Syntax

We are now able to access the models
from within the flask shell.

flask shell will start the shell,
and then we can import the models.

We can create instances of the models
and add them to the db object, using
db.session.add ()

The db.session object will
synchronize with the database when
we commit or £1ush

We can extract entities from the
database using a query.

<model>.query.all () or
session.query (<model>) .all
() will return all entities of type
model.

THE UNIVERSITY OF
J@Y. WESTERN
%ame? AUSTRALIA

THE UNIVERSITY OF

) : WESTERN
SQL-Alchemy Queries A& AUSTRALIA

* The query object is used to wrap an SQL select statement.

e query.get () will extract a single element by id, and
query.all () will return the full collection.

 We can also perform inner joins (query.join ()), left-outer-
joins (query.outerjoin ()), andfilter (filter by ())and
sort (order by ()) the results in the query syntax.

query = (model.Session.query(model.Entry) def get_available_labs():
.join(model.ClassificationItem) labs = Lab.query.\
.join(model.Enumerationvalue) outerjoin(Project, Lab.lab_id==Project.lab_id).\
.filter_by(id=c.row.id) add_columns(Project.project_id,Lab.lab_id, Lab.lab, Lab.time).\
.order_by(model.Entry.amount) # Thi W filter(Project.project_id==None).all()
) return labs

(virtual-environment) drtnf@drtnf-ThinkPad:$ flas

Python 3.6.7 (default, Oct 22 2018, 11:32:17)

[GCC 8.2.0] on linux

App: app [production]

Instance: /Dropbox/ArePricks/Dropbox/Tim/teaching/2019/CITS3403/pair-up/instance
>>> Lab.get_available_labs()[0:10]

[([LID:2, Lab:CSSE 2.01 Monday, May 20, time:1605], None, 2, 'CSSE 2.01 Monday, May 20', 1605), ([LID:3, Lab:CSSE 2.01 Monday, May
SE 2.01 Monday, May 20, time:1615], None, 4, 'CSSE 2.01 Monday, May 20', 1615), ([LID:5, Lab:CSSE 2.01 Monday, May 20, time:1620],
May 20, time:1625], None, 6, 'CSSE 2.01 Monday, May 20', 1625), ([LID:7, Lab:CSSE 2.01 Monday, May 20, time:1630], None, 7, 'CSSE
5], None, 8, 'CSSE 2.01 Monday, May 20', 1635), ([LID:9, Lab:CSSE 2.01 Monday, May 20, time:1640], None, 9, 'CSSE 2.01 Monday, May
CSSE 2.01 Monday, May 20', 1645), ([LID:11, Lab:CSSE 2.01 Monday, May 20, time:1650], None, 11, 'CSSE 2.01 Monday, May 20', 1650)]

Linking in with views and controllers ACYBHEINN

class Project(db. Model)
__tablename__='r e

We can now respond to requests for data, by Ot 10 b Cotn,Tteper, prtnry_key = True)
building models from the database, and then ()((e
populating views with the data. " progect tary 0T

self. descrlptlon \
self.lab_id)

As the code is getting complex, it is a good idea to e ——
. return 'Project - .format(self.project_id,self.description)
have a Controllers.py class, rather than handling s o e T ——
. o def get_team(self):
everythlng In routes.py return Student.query.filter_by(project_id=self.project_id).all()

def get_lab(self):
@app.route('/edit_project', methods=['GET','POST']) lab = Lab.query.filter_by(project_id=self.project_id)\
@Login_required .add_columns(Lab.lab,Lab.time).first()
def edit_project(): TN gl
if not current_user.is_authenticated:
return redirect(url_for('login')) v extends "base.html
project=Project.query.filter_by(project_id=current_user.project_id).first() % block S
L R N if:2>EZ§t ;?2j:2t<;t}12>
flash(current_user.prefered_name+' does not have a project yet')
redirect(url_for('new_project')) T e e
team = project.get_team() <h4>{{student. prefered name}}
if not team[0].id==current_user.id: {% if not partner == None %}
partner = team[0] and
elif len(team)>1: {{partner.prefered_name}}
partner = team[1] {% endif %}'s Project Page
else: </h4>
partner::None S - - <form name='registerProject' action= method="'post' novalidate>
form=ProjectForm()#initialise with parameters B ‘s
form.lab.choices= get_labs(project.lab_1id) {{form.hidden tag()}}
if form.validate_on_submit():#for post requests <p>
lab=Lab.query.filter_by(lab_id=form.lab.data).first() {{ form.project_description.label }}

if lab is None or not (lab.lab_id==project.lab_id or lab.is_available()): {{ form.project_description(size=20, default=project.description) }}
flash("Lab not available") {% for error in form.project_description.errors %}
else: [{{ error}}]
project.description = form.project description.data {% endfor %}
project.lab_id=1lab.lab_id :é‘f
db.session.add(project) {{ form.lab.label }}

db.session.commit() {{ form.lab}}
return redlrect(url for(dex")) </p>
return render_template('edit_ . 1', student=current_user, partner=partner, project=project, <p> {{ form.submit() }}</p>
</div>
</form>
<h6>Cannot change partner's with in a project. To dissolve a team, delete
{% endblock %}

WESTERN
Websockets A& AUSTRALIA

« HTTP requests satisfy the 6 REST fundamentals, but many web
applications depend on real time interaction.

 Websockets were standardise in 2011 as a means to provide full
duplex communication.

 WebSockets allow your client-side JavaScript to open a persistent
connection (stream) to the server.

 This allows real time communication in the application without

having to send HT TP requests.

WEBSOCKETS o -
AVISUAL REPRESENTATIN <
Client Server — = Database Storage
T & 8
i connaction opened
g [rom— Service

P Bi-directional messages 1 I
NS ogea and parsistert connaction v \;
% One side closes channel S Browsers WebSocket
b comnecticn chased i Server or Gateway

PubNub

THE UNIVERSITY OF
2'. WESTERN
%ame? AUSTRALIA

>

SocketlO

 Websockets are supported in Flask via the package flask-
socketlO (see https://flask-socketio.readthedocs.io/en/latest/)

« SocketlO is good for message passing chat or distributed games.
* For direct video and audio, WebRTC can be used (peer-to-peer).

 Clients can connect to a socket on a server, and then the server
can push messages to clients.

 The client has a listener architecture so it will respond to the push
immediately.

>

WESTERN
Sockets in a Flask Project ‘& AUSTRALIA

« Sockets mirror the routes architecture of a Flask project, but
instead of listening for requests, they listen for messages and
actions, and broadcast to all listening clients.

 The server works as a common blackboard for the session (or
room) and the clients implement a listening architecture via jQuery.

 The socketlO architecture maintains rooms that users/processes
can subscribe to.

« Clients and server interact by emitting events including join, status,
message, and leave. You can also create customised events for
clients to create and receive.

« We will follow a simple demonstration from Miguel Grinberg taken
from: https://github.com/miguelgrinberg/Flask-SocketlO-Chat

Setting up the server

« We use a similar
architecture. A main folder
called main, containing a
forms.py for registration,
routes.py for handling
login, and a events.py file
for handling the socket
events.

« The socketio includes a
decorator to match
Incoming messages with
python methods.

« We don't use models, as
there is no persistence
here.

from flask import

VN WESTERN
%am? AUSTRALIA

session
from flask_socketio import emit, join_room, leave_room
from .. import socketio

fisoc

cketio.on('joined', na

espace="'/chat')

def joined(message):

psocketio.on('text’,

@socketio.on('left’,
def left(message):

"""Sent by clients when they enter a room.
A status message is broadcast to all people in the room."""
room = session.get('room')

join_room(room)

emit('status', {'msg': session.get('name') +

amespace="/chat')

def text(message):

"""Sent by a client when the user entered a new message.
The message is sent to all people in the room."""
room = session.get('room')

emit('message', {'msg': session.get('name') + ':' + message['msg']},

amespace="/chat"')

"""Sent by clients when they leave a room.

A status message is broadcast to all people in the room."""
room = session.get('room')

leave_room(room)

emit('status', {'msg': session.get('name') + ' has left the room.'},

' has entered the room.'}, roc

room=room)

room=room)

=room)

Implementing the front-end

We use jQuery to
send events to the
server, listen for
events coming from
the server, and update
the DOM accordingly.

Flask-SocketlO-Chat: Chatroom

<Tim has entered the room.>

<Miguel has entered the room.>

Tim:Hi Miguel, thanks for the excellent tutorials!

Miguel:No worries Tim. I hope your students find them useful

Enter your message here

Leave this room

WESTERN
%am? AUSTRALIA

<html>
<head>
<title>Flask-SocketIO-Chat: {{ room }}</title>
<script type="text/javascript" src="//code.jquery.com/jquery-1.4.2.min.js"></script>
<script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/socket.io/1.3.6/socket.io.min.js"></script>
<script type="text/javascript" charset="utf-8">

var socket;
$(document).ready(function(){
socket = io.connect('http://' + document.domain + ':' + location.port + '/chat');

socket.on('connect', function() {
socket.emit('joined', {});

1

socket.on('status', function(data) {
$('#chat').val($('#chat').val() + '<' + data.msg + '>\n');
$('#chat').scrollTop($('#chat')[@].scrollHeight);

i

socket.on('message', function(data) {
$('#chat').val($('#chat').val() + data.msg + '\n');
$('#chat').scrollTop($('#chat')[0].scrollHeight);

1
$('#text').keypress(function(e) {
var code = e.keyCode || e.which;
if (code == 13) {
text = §('#text').val();
$('#text').val('"');
socket.emit('text', {msg: text});
}
1

1
function leave_room() {
socket.emit('left', {}, function() {
socket.disconnect();

go back to the login page
window.location.href = "{{ url_for('main.index"') }}";
1
}
</script>
</head>
<body>

<hi>Flask-SocketIO-Chat: {{ room }}</h1>
<textarea id="chat" cols="80" rows="20"></textarea>

<input id="text" size="80" placeholder="Enter your message here">

Leave this room
</body>
</html>

Other applications for sockets

THE UNIVERSITY OF
J@Y. WESTERN
%ame? AUSTRALIA

« Sockets can be used for distributing real time events such as real-

time scoreboards, stock prices, or weather.

 Implementing user-ids and sessions (next lecture) can allow you

to have private chats between two users.

* Socket.io allows you to group sockets into namespaces and
rooms, which allows you to control who can access and post

mesSsages.

from flask_socketio import join room, leave room

@socketio.on('join')
def on join(data):
username = datal'username’]
room = data['room’]
join room(room)
send(username + ' has entered the room.', room=room)

@socketio.on('leave')
def on leave(data):
username = data['username’']
room = data['room"']
leave room(room)
send(username + ' has left the room.', room=room)

