
Topic 10:
Model-View-Controller
CITS3403 Agile Web Development

Semester 1, 2023

Architectural Patterns

• Design patterns describe re-useable design concepts, particularly in
software. They describe how objects are organized to call each
other.

• Examples are client-server architecture, pipe and filter, and
blackboard architectures.

• Some specific patterns that apply to web applications are Model
View Controller, Boundary Control Entity, 3-Tier Architecture and
Model View View-Model.

Model View Controller

• The model view controller patter is one of the most popular for
server side web applications.

• The model refers to an object referencing an entity in a database.
• The view is how that object is presented to the user.
• The controller is a linking class that builds the model from the

database, prepares the view based on the model, and the updates
and saves the models back to the database.

Model View ViewModel

• Model View View-Model is a variation of model view controller that
is tailor for client side applications and single page applications.
Rather than having a controller compose the view a binder links the
view to a viewmodel.

• The view presents thethe current state of the viewmodel
• The viewmodel exposes the data and available operations of the

model, and updates the model as required.
• Two way data-binding links the view and viewmodel without need

to link back to the server.

By Ugaya40 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19056842

Designing an MVC structure

• We will focus on the MVC architecture as it is most suitable for web
applications with server side rendering.

• To design an MVC solution architecture, you need to identify what
models, views and controllers you require.

• Recall user stories are simple representations of software requirements.
• In every user story, we can identify nouns which could be models, verbs

which could be routes, and associate a view for the specified user.
• We can then mock up wireframe sketches of view and mock http

requests and responses.

Mock Websites

• Wireframe drawing show the basic layout and functionality of a user interface.
• There are various tools for building these, or you can draw them by hand.
• A series of wire frame mocks can show the sequence of interfaces used in an

application.
• You can also mock the typical http requests and responses your app will serve.
• These can be hard coded using tools like Apiary and Mocky (more on this later)

Implementing Models

• A model is an object that is paired with an entity in a database.
• There is an Object Relational Mapping (ORM) linking the data in the

database to the models in the application.
• The models are only built as needed, and update the database as

required. Most frameworks include ORM support.
• To build the models, we first need to set up the database.
• There are relational databases, document databases, graph

databases,and others
• We will focus on relational databases and particularly SQLite, but

we will discuss alternatives.

Relational Databases

• Relational databases store data as a set of relations, where each
relation is represented as a table.

• Each row of the table is an entity, and each column of the table is
an attribute of that entity.

• Every relation has an attribute that is unique for every entity in that
relation, called the primary key.

• Some relations attributes that are primary keys in other relations.
These are called foreign keys.

Setting up a database

• The DataBase Management System DBMS is an application that
controls access to a database.

• A database is created, and then we set up schemas for the tables
• The schema of the database is the set of tables (relations) that are

defined, the types of the attributes, and the constraints on the
attributes. This is the meta-data of the database and is not
expected to change in the normal usage of the application.

• SQLite commands start with a ‘.’ and can display the metadata
(.help to see all commands)

Relational Query Language

• The basic operations of any database system are Create, Read, Update and
Delete (CRUD). The sequential query language (SQL) provides the syntax for
performing these operations:

• Create is done using an insert statement
• Read is done using the select statement
• Update is done using an update statement
• Delete is done using a delete statement.

NoSQL

• NOSQL standards for not only SQL, and describes non-relational
databases.

• These can be very useful in some applications, but RDMS are still be
far the most popular and general approach.

Linking Models into an App

• Now we have a database setup, we would like to link it into our
application. We will use SQL-Alchemy for ORM with SQLite. Alternatively,
we could use pymongo with Mongo or py2neo with Neo4J.

• We need to install flask-sqlalchemy and flask-migrate
• We will keep the database in a file called app.db, in the root of our app,

and include this in config.py
• Next we update __init__.py to create an SQLAlchemy object called

db, create a migrate object, and import a module called models
(which we will write)

• The models classes define the database schema.

SQLAlchemy Models

• To build a model we import db (the instance of SQLAlchemy) and
our models are then all defined to be subclasses of db.Model

• To see what these modules are doing, you can find the source code
in the virtual environment directory.

• db.Column is a class used to specify the type and constraints of
each column in the table.

• db.relationship is a function that defines attributes based on
a database relationship.

Database Initialisation

• This allows us to define the database schema,
but we still need to link it to the database.
Flask provides some utilities to do this.

• flask db init will initialise a database to
synchronize with the models you have defined.

• flask db migrate will use alembic to
create a migration script that applies changes
to the datatbase.

• flask db upgrade applies that script to
the database (and downgrade to roll the
changes back.)

• This allows us to keep the database schema
and the models in sync.

Alchemy Syntax

• We are now able to access the models
from within the flask shell.

• flask shell will start the shell,
and then we can import the models.

• We can create instances of the models
and add them to the db object, using
db.session.add()

• The db.session object will
synchronize with the database when
we commit or flush

• We can extract entities from the
database using a query.

• <model>.query.all() or
session.query(<model>).all
() will return all entities of type
model.

SQL-Alchemy Queries

• The query object is used to wrap an SQL select statement.
• query.get() will extract a single element by id, and
query.all() will return the full collection.

• We can also perform inner joins (query.join()) , left-outer-
joins (query.outerjoin()), and filter (filter_by())and
sort (order_by()) the results in the query syntax.

Linking in with views and controllers

• We can now respond to requests for data, by
building models from the database, and then
populating views with the data.

• As the code is getting complex, it is a good idea to
have a Controllers.py class, rather than handling
everything in routes.py

• HTTP requests satisfy the 6 REST fundamentals, but many web
applications depend on real time interaction.

• Websockets were standardise in 2011 as a means to provide full
duplex communication.

• WebSockets allow your client-side JavaScript to open a persistent
connection (stream) to the server.

• This allows real time communication in the application without
having to send HTTP requests.

Websockets

• Websockets are supported in Flask via the package flask-
socketIO (see https://flask-socketio.readthedocs.io/en/latest/)

• SocketIO is good for message passing chat or distributed games.
• For direct video and audio, WebRTC can be used (peer-to-peer).
• Clients can connect to a socket on a server, and then the server

can push messages to clients.
• The client has a listener architecture so it will respond to the push

immediately.

SocketIO

• Sockets mirror the routes architecture of a Flask project, but
instead of listening for requests, they listen for messages and
actions, and broadcast to all listening clients.

• The server works as a common blackboard for the session (or
room) and the clients implement a listening architecture via jQuery.

• The socketIO architecture maintains rooms that users/processes
can subscribe to.

• Clients and server interact by emitting events including join, status,
message, and leave. You can also create customised events for
clients to create and receive.

• We will follow a simple demonstration from Miguel Grinberg taken
from: https://github.com/miguelgrinberg/Flask-SocketIO-Chat

Sockets in a Flask Project

• We use a similar
architecture. A main folder
called main, containing a
forms.py for registration,
routes.py for handling
login, and a events.py file
for handling the socket
events.

• The socketio includes a
decorator to match
incoming messages with
python methods.

• We don’t use models, as
there is no persistence
here.

Setting up the server

• We use jQuery to
send events to the
server, listen for
events coming from
the server, and update
the DOM accordingly.

Implementing the front-end

• Sockets can be used for distributing real time events such as real-
time scoreboards, stock prices, or weather.

• Implementing user-ids and sessions (next lecture) can allow you
to have private chats between two users.

• Socket.io allows you to group sockets into namespaces and
rooms, which allows you to control who can access and post
messages.

Other applications for sockets

