
Topic 10: Develop in

the MEAN Architecture
CITS3403 Agile Web Development

Semester 1, 2018Getting MEAN with Mongo,

Express, Angular and Node,

Chapter 3.

Agile Project Development

In this lecture we will look at the stages in building a
fullstack MEAN project, and start build a static Node project.

The development will run over the next 5-6 lectures and will
go through the following stages:

1. Build a static site

2. Design the data model and create a database

3. Build a data API

4. Hook the database into the application

5. Augment the application

Stage 1. Build a static site

The first stage is to build a static version of the

application, which is essentially a number of HTML

screens. The aims of this stage are

• To quickly figure out the layout – use pen and paper

• To ensure that the user flow makes sense

• At this all we want to do is create a working mockup

of the main screens and journeys that a user will

take through the application.

A simple MEAN architecture

Node

Express

webserver

PORT

Jade Views

Mongoose Models

Client

HTML/CSS

JS

AngularMongo DB

Stage 2. Design the data model

The next thing to do is look at any hard-coded data in

the static application and put it into a database. The

aims of this stage are

– To define a data model that reflects the requirements of the

application

– To create a database to work with the model

– The first part of this is to define the data model. Stepping

back to a bird’s-eye view, what are the objects we need

data about, how are the objects connected, and what data

is held in them?

A simple MEAN architecture

Node

Express

webserver

PORT

Jade Views

Mongoose Models

Client

HTML/CSS

JS

AngularMongo DB

Stage 3: Build the data API

Once we have a static site on one hand and a

database on the other. This stage and the next take the

natural steps of linking them together.

To do this we create a REST (REpresentative STate)

API that will allow our application to interact with the

database.

A simple MEAN architecture

Node

Express

webserver

PORT

Jade Views

Mongoose Models

Client

HTML/CSS

JS

AngularMongo DB

Stage 4: Add database to the application

When we get to this stage we have a static application

and an API exposing an interface to our database. The

aim of this stage is to get our application to talk to our

API. Node

Express

webserver

PORT

Jade Views

Mongoose Models
Mongo DB

Client

HTML/CSS

JS

Angular

Stage 5: Augment the App

Here we add the finishing touches. This could include:

• Using JQuery/Angular for a more responsive UX.

• Adding in session management and user

authentication.

• Improving the presentation.

• Making the project easier to maintain, with tests, and

templates.

• Using sockets for real-time interactivity

Planning the application

• Planning the app is best done with pen and paper.

• Sketch the different pages the user will go through.

This is important to

get the flow of

control right and

understand how the

app will be used.

Our app will be call Chortal, and it will be used for

recording and managing a child’s chores.

A basic project

• The project is to build a web application that can

allow children to record their chores, and allow

parents to track rewards for children.

• There are two users (parents and children), and

several entities (parents, children, chores, rewards).

• In Agile development, the process is often broken up

into user stories.

• User stories are short descriptions of features from

the perspective of a user:

– As a Parent I want to set a daily task for my child so that

they are reminded of it everyday.

• See https://www.mountaingoatsoftware.com/agile/user-stories

Chortal Sketch

A simple MEAN architecture

Node

Express

webserver

PORT

Jade Views

Mongoose Models

Client

HTML/CSS

JS

AngularMongo DB

Setting up the project in Express

• The steps to set up the project are:

1. Ensure node is installed and use npm to install the

express generator:

2. Generate an express project:

The parts of our project: package.json

• package.json is all of the node modules the project

uses.

• use npm install –save <new-module> to

automatically have the package added to package.json

• package.json contains metadata about the project ,

and particularly all the dependencies.

• dependencies have indexes: major version; minor

version; patch version.

• use ~ to match the latest patch version, (and there are

various other wildcards too.

package.json

Windows only. Use less, more or cat for MacOS or Linux

The parts of our project: app.js

• app.js contains the main code to run the application

• This is called by bin/www

The parts of our project: public

• the public folder contains

all the public assets we

use to display pages to

the user, such as:

– CSS

– images

– client side javascript

– bootstrap themes

The parts of our project: routes

• the routes folder normally contains the server side

javascript to respond to client requests. We’re going

to change this a bit to use a model-view-controller

architecture.

The parts of our project: views

• The views folder contains jade files for rendering the

html responses sent to the user.

• This separates presentation from content.

The parts of our project: git

• Finally, use git init to make a git repo.

Running the project

• You can now run the app using npm start

• This will run the app and you can access it at
http://localhost:3000

• You can install the nodemon package with npm.

• This package will detect changes in the source and

restart the app automatically.

The Express Process

Express runs on the

server, listening for

requests, then uses

JavaScript to create

responses to send

to the browser.

Model-View-Controller (MVC)

MVC is a design pattern for data driven applications:

1. A request comes into the application.

2. The request gets routed to a controller.

3. The controller, if necessary, makes a request to the model.

4. The model responds to the controller.

5. The controller sends a response to a view.

6. The view sends a response to the original requester.

MVC and express:

• To make express MVC we need to add controllers and

models:
1. make a new folder app_server and move the routes, and

views directory there.

2. add a models and controllers directory to app_server.

3. Update app.js with the new routes location

Adding controllers to routes

• By default, the routes

contain the logic for

handling requests

• Instead we get the

routes file to call a

controller

• … and put the logic in

the controller instead

Making a view…

• res.render(index, {title:’Chortal’}) is

an Express function that builds a html page from a

jade template and a javascript object.

• Inside the views folder

we’ll find index.jade:

• Which extends the

generic template,

layout.jade

• Note, the url’s given are relative to the public

directory.

Next …

• We’ll look at building Jade views and linking them to

routes….

Adding controllers

• For each collection (e.g minion) we can add a

controller (minion.js) in the controller directory:

• This exports two

functions: minionList and

minion.

• We call these functions in

routes/index.js to respond

to requests from the

browser.

• We can then do the same for tasks, rewards and

other models.

Adding views

• The res.render function takes a view and

populates it with data.

• We can write a view for each controller…

• Pug can refer to the objects passed into the render

function.

• See: http://jade-lang.com/ for a guide on using pug.

http://jade-lang.com/

Pug (formerly Jade)

Pug is a succinct, programmatic

way of writing html.

Other view engines

• You can vary the view engine

in app.js

• Embedded JavaScript is a

popular alternative as it keeps

the html form.

• In ejs, <%...> is used to mix js

in html. <%=…> will output

text into the html stream.

Adding style…

• You can add in

bootstrap and

jQuery if you like.

They both should

be added to the

public directory in

your project.

• You can also set up

some css styles in

the public/styles/

directory…

Adding a navigation bar

