WESTERN

e AUSTRALIA

Topic 10: Develop In
the MEAN Architecture

CITS3403 Agile Web Development

Getting MEAN with Mongo, Semester 1, 2018
Express, Angular and Node,
Chapter 3.

Agi ' WESTERN
gile Project Development @, WESTERN

In this lecture we will look at the stages in building a
fullstack MEAN project, and start build a static Node project.

The development will run over the next 5-6 lectures and will
go through the following stages:

1. Build a static site

Design the data model and create a database
Build a data API

Hook the database into the application
Augment the application

bk

Stage 1. Build a static site ¥, WESTERN

The first stage Is to build a static version of the
application, which is essentially a number of HTML
screens. The aims of this stage are

* To quickly figure out the layout — use pen and paper
 To ensure that the user flow makes sense

At this all we want to do is create a working mockup
of the main screens and journeys that a user will
take through the application.

A simple MEAN architecture @E{,@%ﬁ‘fﬂ

Node

Express
webserver

Jade Views

Mengoese-Meodels

Stage 2. Design the data model E‘ﬂ%%ﬁﬁﬁ
The next thing to do is look at any hard-coded data In
the static application and put it into a database. The
alms of this stage are
— To define a data model that reflects the requirements of the
application
— To create a database to work with the model

— The first part of this is to define the data model. Stepping
back to a bird’s-eye view, what are the objects we need
data about, how are the objects connected, and what data
IS held in them?

A simple MEAN architecture

Mongo DB

Node

Express
webserver

Jade Views

Mengoose-Models

s AUSTRALIA

Stage 3: Build the data AP ¥, WESTERN

Once we have a static site on one hand and a
database on the other. This stage and the next take the
natural steps of linking them together.

To do this we create a REST (REpresentative STate)
API that will allow our application to interact with the
database.

A simple MEAN architecture

Mongo DB

Node

Express
webserver

Jade Views

Mongoose Models

s AUSTRALIA

Stage 4: Add database to the application E{,E%E‘f{;‘

When we get to this stage we have a static application
and an API exposing an interface to our database. The
aim of this stage is to get our application to talk to our
API. Node

Express
webserver

PORT

! Jade Views
Mongo DB

Mongoose Models

Stage 5: Augment the App @H@?{E‘fﬂ

Here we add the finishing touches. This could include:

Using JQuery/Angular for a more responsive UX.

Adding In session management and user
authentication.

Improving the presentation.

Making the project easier to maintain, with tests, and
templates.

Using sockets for real-time interactivity

Planning the application @1‘{,@%&‘5&

* Planning the app Is best done with pen and paper.
« Sketch the different pages the user will go through.

This Is important to o fﬂf—-—}ﬁg T

get the flow of \ i — }-—{w o
control right and o ﬁf--ff--fﬁ‘ff =
understand how the F;‘ — | == w2
app will be used. e } - lL ae) |

Our app will be call Chortal, and it will be used for
recording and managing a child’s chores.

A basic project ¥, WESTERN

* The project is to build a web application that can
allow children to record their chores, and allow
parents to track rewards for children.

* There are two users (parents and children), and
several entities (parents, children, chores, rewards).

* In Agile development, the process is often broken up
Into user stories.

« User stories are short descriptions of features from
the perspective of a user:

— As a Parent | want to set a daily task for my child so that
they are reminded of it everyday.

« See https://www.mountaingoatsoftware.com/agile/user-stories

THE UNIVERSITY OF

Chortal Sketch ﬁﬁﬁﬁrg

C horbol SEete A

/.40/-2',(R

,Oconﬂfw /"

ﬂe WY
Weter

vr |

A simple MEAN architecture @E{,@%ﬁ‘fﬂ

Node

Express
webserver

Jade Views

Mengoese-Meodels

Setting up the project in Express @Eﬂ%ﬁﬁfﬂ

The steps to set up the project are:

1. Ensure node is installed and use npm to install the
express generator:

TMBA: C nor 1'1| 1'J.|||_ npm 1ns 1'1|| —Q express—generator
/Us / 1pm—pack nfexpress —-> /lUsers/tim/.npm-packages/lib/node_modules/express—generator/bin/express

" Generate an express project:

:\Users\wei>express chortal : chortal/bin
: chortal/bin/www
warning: the default view engine will not be jade in future releases : chortal/public/images
warning: use ~--view=jade' or ~--help' for additional options : chortal/public/javascripts
: chortal/public/stylesheets

: chortal/public/stylesheets/style.css
: chortal

: chortal/package.json

: chortal/app.js

: chortal/views

: chortal/views/index.jade
: chortal/views/layout.jade

install dependencies:
> cd chortal && npm install

run the app:

: chortal/views/error.jade > SET DEBUG=chortal:* & npm start
: chortal/public

: chortal/routes

: chortal/routes/index.js

: chortal/routes/users.js

The parts of our project: package.json @%@%{E‘Eﬂ

 package.json Is all of the node modules the project
uses.

* USe npm 1install —-save <new-module> 10
automatically have the package added to package.json

* package. json contains metadata about the project,
and particularly all the dependencies.

* dependencies have indexes: major version; minor
version; patch version.

* use ~ to match the latest patch version, (and there are
various other wildcards too.

p ac kag € J sSon %gi? AUSTRALIA

Windows only. Use 1ess, more or cat for MacOS or Linux

C:\Users\weilchortal>type package.json
{
"name”: "chortal”,
"version”: "©0.0.0",
"private”: true,
"scripts”: {
"start”: "node ./bin/www"
s
"dependencies”: {
"body-parser”: "~1.18.2",
"cookie-parser”: "~1.4.3"
"debug”: "~2.6.9",
"express”: "~4.15.5",
"jade": "~1.11.0",
"morgan”: "~1.9.0",
"serve-favicon”: "~2.4.5"
}
}

The parts of our project: app.js @%@?{E‘Eﬂ

* app.js contains the main code to run the application
* This is called by bin/www
The parts of our project: public

* the public folder contains

1mages

sty Llesheets

all the public assets we ./images:
use to display pages to :
the user, such as:

- CSS :\Users\wei\chortal\public>dir /s /b
— images :\Users\wei\chortal\public\images

:\Users\wei\chortal\public\javascripts

— client side javascript :\Users\wei\chortal\public\stylesheets

:\Users\wei\chortal\public\stylesheets\style.css

— bootstrap themes

The parts of our project: routes @%@?{E‘Eﬂ

* the routes folder normally contains the server side

javascript to respond to client requests. We're going
to change this a bit to use a model-view-controller
architecture.

The parts of our project: views

* The views folder contains jade files for rendering the
html responses sent to the user.

* This separates presentation from content.

The parts of our project: git

 Finally, use git init to make a git repo.

C:\Users\weilchortal>git init

Initialized empty Git repository in C:/Users/wei/chortal/.git/

Running the project ¥, WESTERN

* You can now run the app using npm start

* This will run the app and you can access it at
http://localhost:3000

o C A [localhost:3000

Express

Welcome to Express

* You can install the nodemon package with npm.

* This package will detect changes in the source and
restart the app automatically.

The Express Process

Express runs on the
server, listening for
requests, then uses
JavaScript to create
responses to send
to the browser.

O
£

Fo=gn=y [HE UNIVERSITY OF

¥ WESTERN
%a? AUSTRALIA

Visitor Browser Sarver Middleware

I.__ I|
ums HTML Data + view 9

Express ret
HTML to browsar Y y,
i + |9 -
Browser — E
Q:’r Express cormo es
data and view
Server

- -1
“"-___ —
— _ -
Browser requests I —
reo Al P — _
CS5 file referenced — R —
i =XPIBSS ins \ “Static” folder

in HTML file —— usel trough

Visitor Browser L

M)
_/
LN

Browser renders
final web page

Figure 3.4 The key interactions and processes that Express goes through when responding to the
request for the default landing page. The HTML page is processed by Node to compile data and a
view template, and the CSS file is served asynchronously from a static folder.

Model-View-Controller (MVC)

s AUSTRALIA

MVC is a design pattern for data driven applications:
A request comes into the application.

The request gets routed to a controller.
The controller, if necessary, makes a request to the model.
The model responds to the controller.
The controller sends a response to a view.
The view sends a response to the original requester.

o 0k Wb E

Model

o Request Request o Controller may
comes into gets routed to send request
application controller to mode

Visitor Router Controller
Q Request O Request Request
£ 8
s} —
Response Response Response
View
View sends e Controller o Model
response to sends response responds to
requester to view controller

B

Figure 3.5 Request-response flow of a basic MVC architecture

MVC and express: @%@?{E‘fﬂ

* To make express MVC we need to add controllers and

models:

1. make a new folder app server and move the routes, and
views directory there.

2. add amodels and controllers directory to app server.
3. Update app. js with the new routes location

, path.join{__dirname,
15 app.setl ,)3

Adding controllers to routes @%@%{E‘Eﬂ
« By default, the routes o er = exposs Rovtor ;.
contain the logic for 4 /% GET users listing. ¥/
] 2 'UJtE'.UEt% , Tunctionireq, res, next) 1
handling requests i

9 module.exports = router;

¢ InStead We get the 1 var express = requirel)3

2 var router = express.Router();

routes file to call a 3 var ctrifain = require(
controller

b router.geti , crtlMain.index);

-
¥

8 module.exports = router;

* ... and put the logic in o
the Controller instead _I module.exports.index = function(req,res){

res. render yAtitle: }s

J-;

£ THE UNIVERSITY OF
Making a view... %, WESTERN

e res.render (index, {title:’Chortal’}) IS

an Express function that builds a html page from a
jade template and a javascript object.

. . extends layout
* Inside the views folder ’
we’'ll find index.jade: prock content

hl= title
p Welcome to #{title}

* Which extends the o
generlc template r‘ei?.‘t].9= title
Iayout ade tAlainlii(r‘el: stylesheet', href='/stylesheets/style.css")

block content

* Note, the url’s given are relative to the public
directory.

WESTERN
Next ... A& AUSTRALIA

« We'll look at building Jade views and linking them to
routes....

Adding controllers @E{Eﬁﬁfﬂ

For each collection (e.g minion) we can add a
controller (minion.js) in the controller directory:

1l

2 module.exports.minionList = function(req,res){

ThiS exports tWO z}:res . render(Jtitle: H;
funCtionS: minion LiSt and t‘ module.exports.minion = function(reg,res){

8 res.render(ititle: H;
] L] g }-
I I I I n I O n =/2016/CITS34083/Chortal/app_server/controllers/minion.js

| Iar‘ express = reguire(|H

We call these functions In 2 var router = express.Router();

i var ctriMinion = require(

4 var ctriTask = reguire(

routes/index.js to respond EEEEEEEEEES
tO requeStS from the “' router.get(, ctriMinion.minionList);

9
10

brcwser. 11 router.get(. ctriMinion.minion);

<ver/routes/index.js CWD: /Users/tim/Dropbox/Tim/tea

We can then do the same for tasks, rewards and
other models.

. . F¥a:] THE UNIVERSITY OF
Adding views i'u!i WESTERN

* The res.render function takes a view and
populates it with data.

« \We can write a view for each controller...

‘:lxtends layout €& > C f [localhost:3000/task

2 module.exports.taskInfo = function(reg,res){

3 block content 3 res.render(,iname:
4 description:
5 hl= name value: 2});

6 p= description
7 p This chore earns #{value} stars

Defeat sentry

<al/app_server/controllers Line: 1 of 9 Col: 1 =@3/Chortal/app_server/controllers Line: 1 of 4 Col: Destroy a sentry using a portal gun

This chore earns 2 stars

* Pug can refer to the objects passed into the render
function.

« See: http://jade-lang.com/ for a guide on using pug.

http://jade-lang.com/

Fregne] THE UNIVERSITY OF

Y WESTERN
e # AUSTRALIA

Pug (formerly Jade)

doctype html
html{lang="en")
head
title= pageTitle
script(type='text/javascript').
if {foo) {
bar{l + &)
}
body
hl Jade - ncode template engine
#container.col
if youlAreUsingJade
p You are amazing
else
p Get on it!
P-
Jade is a terse and simple
templating language with a
strong focus on performance
and powerful features.

Pug is a succinct, programmatic

way of writing html.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Jade</title>
<script type="text/javascript">
if (foo) {
bar(l + 5)
}

</script>
</head>
<body>

<hl>Jade - node template engine</hl>
<div id="container" class="col">
<p>You are amazing</p>
<p>
Jade is a terse and simple
templating language with a
strong focus on performance
and powerful features.
</p>
</div>
</body>
</html>

Fo=gn=y [HE UNIVERSITY OF

Other view engines O, WESTERN

* You can vary the view engine [Eitsiyre i atss

3 var favicon = require(

|n app JS ~ Jr logger = requirel(

» var cookieParser = require(
6 var bodyParser = require(

 Embedded JavaScriptis a B var index = require(
9 var users = reguire(

popular alternative as it keeps Eiuu—_—_—_G_——s"
the html form.

* In gjs, <%...> is used to mix |s
In html. <%-=...> will output
text into the html stream.

14 app.set(» path.join{__dirname,
15 app.set(H
16

<hl>»<%= title %></hl>
<yl>
<% for(wvar i=0; i<supplies.length; i++) { %>
<]li=
<a href='supplies/<%= supplies[i] %>'>
<%= gupplies[i] %>
</ax>

<% } &>
</ful>

. WESTERN
Adding style... & AUSTRALIA

* You can add Iin :
1 goctype html
bootstrap and 2 " hesd

title= title

JQuery If yOu Ilke_ ; link(rel='stylesheet', href='/bootstrap-3.3.6—-dist/css/bootstrap.css')

link(rel="'stylesheet', href='/styles/style.css')

They both should G

be added to the = Scribt (aront boetatron 3. 3.6 4ist/] a/hotstrap.min. J5¢)

public directory in

your project. —
» You can also set up [HE R

some css styles in [

the public/styles/

directory...

~/Dropbox/Tim/teaching/2016/CITS3483/Chortal/app_server/views/layout.jade CWD:

15 color: orange;

16 }
<g/2016/CITS3403/Chortal/public/stylesheets Line: 4 of 16 Col: 1]

Adding a navigation bar E{E%EE‘EIE

title= title
link(rel='stylesheet', href='/bootstrap-3.3.6-dist/css/bootstrap.css')
link(rel="'stylesheet', href='/stylesheets/style.css')

body
.navbar.navbar-default
.container—fluid
.navbar-header
alhref="/'} Chortal
button.navbar-toggle(type='button', data-toggle='collapse', data-target='#navbar-main')
span.icon—bar
span.icon—bar
span.icon—bar
#navbar-main.navbar-collapse.collapse
ul.nav.navbar-nav
1i
alhref="'/tasks/') Chores
.container
block content
footer
« FOW
«col-x5-12
small CITS3483 Agile Web Development

script(src="'/javascripts/jgery-2.2.3.min.js') C h O r‘tal

script(src="/bootstrap-3.3.6-dist/js/bootstrap.min.js')

Chorta
Chores

Welcome to Chortal

Minions!

The minions and their stars are in the table below...

MinionStars
M1 2

M2 3
CIT53403 Agile Web Development

