
Core JavaScript:

Objects, and Functions
CITS3403 Agile Web Develpopment

Semester 1, 2018

Object Orientation and JavaScript

• JavaScript is object-based

– JavaScript defines objects that encapsulate both data and processing

– However, JavaScript does not have the same inheritance nor subtyping (therefore
polymorphism) as normal OOP such as Java or C#.

• JavaScript provides prototype-based inheritance

– See, for example this Wikipedia article for a discussion:
http://en.wikipedia.org/wiki/Prototype-based_languages

Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

• Objects are collections of properties

• Properties are either data properties or method properties

– Data properties are either primitive values or references to other objects

– Primitive values are often implemented directly in hardware

– Method properties are functions (more later)

• The Object object is the ancestor of all objects in a JavaScript program

– Object has no data properties, but several method properties

http://en.wikipedia.org/wiki/Prototype-based_languages

Arrays

• Arrays are lists of elements indexed by a numerical value

• Array indexes in JavaScript begin at 0

• Arrays can be modified in size even after they have been created

• E.g.

3
Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Array Object Creation

• Arrays can be created using the new Array method

– new Array with one parameter creates an empty array of the specified number of
elements

new Array(10);

– new Array with no parameter creates an empty array

var a = new Array();

a[0] = “dog”; a[1] = “cat”; a[2] = “hen”;

console.log(a.length); // outputs 3

– new Array with two or more parameters creates an array with the specified parameters
as elements

new Array(1, 2, “three”, “four”);

• Literal arrays can be specified using square brackets to include a list of elements
var alist = [1, “ii”, “gamma”, “4”];

• It is better to avoid the “new” keyword where possible

• Elements of an array do not have to be of the same type

4
Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Characteristics of Array Objects

• The length of an array is one more than the highest index

• You can iterate over an array using this length property, or you can use for….in
construct

for(var i in a)

console.log(a[i]);

• Assignment to an index greater than or equal to the current length simply
increases the length of the array

– a[100] = “lion”; console.log(a.length);

– (Note: errors may go unnoticed.)

• Only assigned elements of an array occupy space

– Suppose an array were created using new Array(200)

– Suppose only elements 150 through 174 were assigned values

– Only the 25 assigned elements would be allocated storage, the other 175 would not be
allocated storage

• If you query a non-existent array index, you get undefined –
console.log(a[90]) // outputs undefined

5
Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Array Methods

• join returns a string of the elements in the array

• reverse ….reverses the array

• sort …. sorts the array, can take a comparator function as an
argument

• concat concatenates 2 or more arrays

• slice creates 2 arrays from 1 array

• splice inserts a group of elements at a given index

• delete replaces an element at an index with undefined

Associative Arrays index on Strings and are actually Objects. These oeprations
are not available to them:

var arr = [];

arr[“name”] = “Bob”;

6
Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Dynamic List Operations

• push

– Add to the end

• pop

– Remove from the end

• shift

– Remove from the front

• unshift

– Add to the front

7

Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Diagram from Wikipedia.

Like Perl and Ruby, Javascript already

have operations for pushing and popping

an array from both ends, so one can use

push and shift functions to enqueue and

dequeue a list (or, in reverse, one can use

unshift and pop)

• A two-dimensional array in JavaScript is an array of arrays

– This need not even be rectangular shaped: different rows could have different

length

• Example nested_arrays.js illustrates two-dimensional arrays

http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://localhost/~cara/IntTech/w4code4/nested_arrays.js

Function Fundamentals

• Function definition syntax

– A function definition consists of a header followed by a compound statement

– A function header:

• function function-name(optional-formal-parameters)

• Function call syntax

– Function name followed by parentheses and any actual parameters

– Function call may be used as an expression or part of an expression

• Functions must be defined before use in the page header (or linked in an

external file)

8
Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

• return statements

– A return statement causes a function to cease execution and control to pass to

the caller

– A return statement may include a value which is sent back to the caller

– If the function doesn’t have any return statement, or

uses an empty return with no value, then undefined is

returned.

Functions

• Along with the objects, functions are the core components in
understanding Javascript. We can also treat functions as objects.
The most basic function is as follows

function add(x, y){

var total = x+y;

return total;

}

• You can call the above function with no parameter as well. In
such case, they will be set to undefined.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Calling Functions from HTML

• JavaScript file:

• XHTML file:

1

0Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

<body>

<script>

myfunction(7,6);

</script>

</body>

<head>

<script src="somefile.js"></script>

</head>

function myfunction (myparameter1, myparameter 2, ...)

{

// do something

console.log(“My answer is...”,answer); // or maybe...

return answer;

}

Functions are Objects

• Functions are objects in JavaScript (or first class functions)

• Functions may, therefore, be assigned to variables and to object properties

– Object properties that have function name as values are methods of the object

1

1Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Example

function fun() {

console.log("This surely is fun!");

}

ref_fun = fun; // Now, ref_fun refers to

// the fun object

fun(); // A call to fun

ref_fun(); // Also a call to fun

Local Variables

• “The scope of a variable is the range of statements over which it is visible”

• A variable not declared using var has global scope, visible throughout the

page, even if used inside a function definition

• A variable declared with var outside a function definition has global scope

• A variable declared with var inside a function definition has local scope,

visible only inside the function definition

– If a global variable has the same name, it is hidden inside the function definition

1

2Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Parameters

• Parameters named in a function header are called formal parameters

• Parameters used in a function call are called actual parameters

• Use arguments to access non-formal parameters

1

3Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Parameters are passed by value

For an object parameter, the reference is passed, so

the function body can actually change the object

(effectively pass by reference)

However, an assignment to the formal parameter will

not change the actual parameter

Parameter Passing Example

• The first assignment changes list in the caller

• The second assignment has no effect on the list object in the caller

1

4Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

function fun1(my_list) {

var list2 = new Array(1, 3, 5);

my_list[3] = 14; //changes actual parameter

my_list = list2; //no effect on actual parameter

return my_list;

}

var list = new Array(2, 4, 6, 8)

fun1(list);

Parameter Checking

• JavaScript checks neither the type nor number of parameters in a function

call

– Formal parameters have no type specified

– Extra actual parameters are ignored (however, see below)

– If there are fewer actual parameters than formal parameters, the extra formal

parameters remain undefined

• This flexibility is typical of many scripting languages

– different numbers of parameters may be appropriate for different uses of the

function

• A property array named arguments holds all of the actual parameters,

whether or not there are more of them than there are formal parameters

1

5Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Functions

• You can pass in more arguments than the function is
expecting

console.log(add(2, 3, 4)); // outputs 5

• Functions have access to an additional variable inside their
body called arguments, which is an array-like objects holding
all of the values passed to that function. Let’s write a function
which takes as many arguments values as we want

function avg(){

var sum = 0;

for (var i=0; i<arguments.length; i++)

sum += arguments[i];

return sum / arguments.length;

}

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

https://developer.mozilla.org/en/JavaScript/Reference/Functions_and_function_scope/arguments

Functions

• What if we want to calculate the average value of an array? We can
re-use the above function for arrays in the following way

console.log(avg.apply(null, [2, 3, 4, 5])); // outputs 3.5

// apply() has a sister function called call

var x = 10; var o = { x: 15 };

function f(message) {

console.log(message, this.x);

}

f("invoking f");

f.call(o, "invoking f via call");

• In Javascript, you can create anonymous functions
var avg = function() { // the rest of the body……… }

This is extremely powerful as it lets you put a function definition
anywhere that you would normally put an expression.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/call

Function Passing Example
The sort Method

• A parameter can be passed to the sort method to specify how to sort

elements in an array

– The parameter is a function that takes two parameters

– The function returns a negative value to indicate the first parameter

should come before the second

– The function returns a positive value to indicate the first parameter

should come after the second

– The function returns 0 to indicate the first parameter and the second

parameter are equivalent as far as the ordering is concerned

• Example:

1

8Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Constructors

• Constructors are functions that create and initialize properties for new

objects

• A constructor uses the keyword this in the body to reference the object

being initialized

• Object methods are properties that refer to functions

– A function to be used as a method may use the keyword this to refer to the

object for which it is acting

• Example car_constructor.js

1

9Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

http://localhost/~cara/IntTech/w4code4/car_constructor.js

Functions (Recursive)

• Like any other languages, you can write recursive
functions in Javascript. However, this creates a problem
if the function is anonymous. How would you call a
function without its name? The solution is using named
anonymous functions -

var ninja = {

yell: function cry(n) {

return n > 0 ? cry(n-1) + "a" : "hiy";

}

};

console.log(ninja.yell(5)); // outputs hiyaaaaa

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Built-in Objects

The Math Object

• Provides a collection of properties and methods useful

for Number values

• This includes the trigonometric functions such as sin

and cos

• When used, the methods must be qualified, as in
Math.sin(x)

• See http://www.w3schools.com/js/js_math.asp

2

2Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu..

http://www.w3schools.com/js/js_math.asp

The Date Object

• A Date object represents a time stamp, that is, a point in

time

• A Date object is created with the new operator

– var d = new Date();

– creates a Date object for the time at which it was

created

• d.setFullYear(2003,10,5);

– resets to 5th November 2003

2

3Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu..

The Date Object: Methods

2

4Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu..

Window and Document

• The Window object represents the window in which the document

containing the script is being displayed

• The Document object represents the document being displayed using

DOM (more on this later...)

• Window has two properties

– window refers to the Window object itself

– document refers to the Document object

• The Window object is the default object for JavaScript, so properties

and methods of the Window object may be used without qualifying

with the class name

2

5Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu..

Javascript IO

• Standard output for JavaScript embedded in a browser is the window displaying the

page in which the JavaScript is embedded

• Writing to the document object is now considered bad practice. For simple

debugging use

console.log(“The result is: ”, result, “
”);

• To read, you can use alert or confirm. To get input you can use prompt.

• In NodeJS you can access stdin, stdout, and stderr through the process

object. Eg:

const readline = require('readline');

const rl = readline.createInterface({

input: process.stdin,

output: process.stdout});

rl.question('What do you think of Node.js? ', (answer) =>

{

console.log('Thank you for your feedback:', answer);

rl.close();});
2

6Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu..

Errors in Scripts

• JavaScript errors are detected by the browser

• Different browsers report this differently

– Firefox uses a special console

• Can insert breakpoint in code with:

debugger;

• Support for debugging is provided

– IE, the debugger is part of the browser

– Firefox , plug-ins are available

• These include Venkman and Firebug

– Safari: Develop | Show Error Console

• First use: Choose Preferences | Advanced | Show Develop menu in menu bar

• Note: Reopen error console after reloading page (bug?)

– Chrome

• Use console from the Developer Tools

2

7Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

User-Defined Objects

• JavaScript objects are simply collections of name-value

pairs. As such, they are similar to HashMaps in Java.

• An object may be thought of as a

Map/Dictionary/Associative-Storage.

• If a variable is not a primitive (undefined, null, boolean,

number or string), its an object.

• The name part is a string, while the value can be any

JavaScript value – including objects.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Object Creation and Modification

• There are two basic ways to create an empty object –

• The new expression is used to create an object

var obj = new Object();

– This includes a call to a constructor

– The new operator creates a blank object, the constructor creates and initializes

all properties of the object

• The second is called object literal syntax. It’s also the core of JSON format

and should be preferred at all times.

// sets the objects prototype to Object.prototype

var obj = {};

// sets null as object prototype

var obj = Object.create(null);

2

9Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Object literal

• Object literal syntax can be used to initialize an object in its entirety –

var obj = {

name: “Carrot”,

for : “Max”,

detail: { color: “Orange”, size: 12 }

};

• Attribute access can be chained together –

console.log(obj.detail.color);

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Accessing Object Properties

• Just like Java, an object’s properties can be accessed using

the dot operator -

– Unit.name = “Agile Web Programming”

• And using the array-like index –

– Unit[“name”] = “Agile Web Programming”;

• Both of these methods are semantically equivalent.

• The second method has the advantage that the name of the property

is provided as a string, which means it can be calculated at run-

time. It can also be used to set and get properties with names that

are reserved words.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Dynamic Properties

• Create my_car and add some properties

// Create an Object object

var my_car = new Object();

// Create and initialize the make property

my_car.make = "Ford";

// Create and initialize model

my_car.model = "Contour SVT";

• The delete operator can be used to delete a property from an object

• delete my_car.model

3

2Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

The for-in Loop

• Syntax

for (identifier in object)

statement or compound statement

• The loop lets the identifier take on each property in turn in the object

for (var prop in my_car)

console.log("Key: ", prop, "; Value:",my_car[prop]);

• Result:

– Name: make; Value: Ford

– Name: model; Value: Contour SVT

3

3Some material Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Edited by Cara MacNish and Wei Liu.

Creating Object Properties

var person = Object.create(null);

Object.defineProperty(person, 'firstName', {

value: "Yehuda", writable: true, enumerable: true,

configurable: true

});

Object.defineProperty(person, 'lastName', {

value: "Katz", writable: true, enumerable: true,

configurable: true

});

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Object-orientation in JavaScript

• JavaScript doesn’t have classes, so its object-oriented

approach doesn’t match that of other popular OOP languages

like Java, C# etc. Instead, it supports a variation of Object-

oriented programming known as Prototype-based

Programming.

• In prototype-based programming, classes are not present, and

behavior reuse (equivalent to inheritance in Java) is

accomplished through a process of decorating existing objects

which serves as prototypes. This model is also known as class-

less, prototype-oriented or instance-based programming.

• Just like Java, every object in Javascript is an instance of the

object Object and therefore inherits all its properties and

methods.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

The this keyword

• When used inside a function, this refers to the current object. What that

actually means is specified by the way in which you called that function.

• In the global scope of a browser it refers to the window displaying the

HTML.

• In Node, it refers to the execution environment.

• If you called it using the dot notation or bracket notation on an object, that

object becomes this. If any of these notations wasn’t used for the call, then

this refers to the global object (the window object). For example

s = makePerson("Simon", "Willison")

var fullName = s.fullName;

console.log(fullName()); // will output undefined

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Using this for objects

• We can take advantage of this keyword to improve our
function in the following way

function Person(first, last) {

this.first = first;

this.last = last;

this.fullName = function() {

return this.first + ‘ ‘ + this.last;

}

this.fullNameReversed = function() {

return this.last + ‘, ‘ + this.first;

}

}

var s = new Person(“Kowser Vai", “the Ice-cream Guy");

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

The new keyword

• new is strongly related to this. What it does is it creates a brand new
empty object, and then calls the function specified, with this set to that
new object. Functions that are designed to be called by new are called
constructor functions.

• When the code new Person(…) is executed, the following things happen:

1. A new object is created, inheriting from Person.prototype.

2. The constructor function Person is called with the specified
arguments and this bound to the newly created
object. new Person is equivalent to new Person (), i.e. if no
argument list is specified, Person is called without arguments.

3. The object returned by the constructor function becomes the result
of the whole new expression. If the constructor function doesn't
explicitly return an object, the object created in step 1 is used
instead. (Normally constructors don't return a value, but they can
choose to do so if they want to override the normal object creation
process.)

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Function objects reuse

• Every time we are creating a person object, we are creating two new
brand new function objects within it. Wouldn’t it be better if this code was
shared? There are two ways in which code can be shared. The first way
is the following

function personFullName() {

return this.first + ' ' + this.last;

}

function personFullNameReversed() {

return this.last + ', ' + this.first;

}

function Person(first, last) {

this.first = first;

this.last = last;

this.fullName = personFullName;

this.fullNameReversed = personFullNameReversed;

}

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Function objects reuse

• The second (and best) way is to use the prototype
function Person(first, last) {

this.first = first;

this.last = last;

}

Person.prototype.fullName = function() {

return this.first + ' ' + this.last;

}

Person.prototype.fullNameReversed = function() {

return this.last + ', ' + this.first;

}

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

The prototype

• Person.prototype is an object shared by all instances of
Person. It forms a part of a lookup chain (or, prototype
chain) : any time you attempt to access a property of
Person that isn’t set, Javascript will check
Person.prototype to see if that property exists there
instead. As a result, anything assigned to
Person.prototype becomes available to all instances of
that constructor via the this object. The root of the
prototype chain is Object.prototype.

• This is an incredibly powerful tool. Javascript lets you
modify something’s prototype at anytime in your
program, which means you can add extra methods to
existing objects at runtime.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Adding methods at run time

using prototype

var s = “Issa";

String.prototype.reversed = function(){

var r = "";

for (var i = this.length - 1; i >= 0; i--){

r += this[i];

}

return r;

}

s.reversed(); // will output assi

“This can now be reversed".reversed()

// outputs desrever eb won nac sihT

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

JavaScript inheritance through

prototype

// define the Person Class

function Person() {}

Person.prototype.walk = function(){

console.log ('I am walking!');

};

Person.prototype.sayHello =

function(){

console.log ('hello');

};

// define the Student class

function Student() {}

// inherit Person

Student.prototype = new Person();

//modify the Person prototype

Person.prototype.sing=function(){

console.log(“Rock and roll”);

};

// replace the sayHello method

Student.prototype.sayHello = function(){

console.log('hi, I am a student');

}

// add sayGoodBye method

Student.prototype.sayGoodBye = function(){

console.log('goodBye');

}

var student1 = new Student();

student1.sayHello();

student1.walk();

student1.sayGoodBye();

student1.sing();

// check inheritance

console.log(student1 instanceof Person);

// true

console.log(student1 instanceof Student);

// true

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu and Asher Nevins.

So, what exactly is a prototype?

• A prototype is an object from which other objects inherit properties.

Any object can be a prototype.

• Every object has a prototype by default. Since prototype are

themselves objects, every prototype has a prototype too (There is

only one exception, the default Object prototype at the top of every

prototype chain).

• If you try to look up a key on an object and it is not found, JavaScript

will look for it in the prototype. It will follow the prototype chain until it

sees a null value. In that case, it returns undefined.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Setting object prototype

var man = Object.create(null);

defineProperty(man, 'sex', "male");

var yehuda = Object.create(man);

defineProperty(yehuda, 'firstName', "Yehuda");

defineProperty(yehuda, 'lastName', "Katz");

yehuda.sex // "male"

yehuda.firstName // "Yehuda"

yehuda.lastName // "Katz"

Object.getPrototypeOf(yehuda)

// returns the man object

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Inner functions

• JavaScript function declarations are allowed inside other
functions

function betterExampleNeeded(){

var a = 1;

function oneMoreThanA(){

return a + 1;

}

return oneMoreThanA();

}

• A closure is the local variables for a function – kept alive
after the function has returned.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Why inner functions?

• This provides a great deal of utility in writing more
maintainable code. If a function relies on one or two
other functions that are not useful to any other part of
your code, you can nest those utility functions inside
the function that will be called from elsewhere. This
keeps the number of functions that are in the global
scope down, which is always a good thing.

• This is also a great counter to the lure of global
variables. When writing complex code it is often
tempting to use global variables to share values
between multiple functions — which leads to code that
is hard to maintain. Nested functions can share
variables in their parent, so you can use that
mechanism to couple functions together when it
makes sense without polluting your global namespace
— 'local globals' if you like. This technique should be
used with caution, but it's a useful ability to have.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

JavaScript Closure

• Using inner functions we can use one of the most powerful
abstractions Javascript has to offer – closure. A quick quiz,
what does this do –

function makeAdder(a) {

return function(b){

return a + b;

}

}

x = makeAdder(5);

y = makeAdder(20);

console.log(x(6)); // ?

console.log(y(7)); // ?

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Javascript closure (cont.)

• Here, the outer function (makeAdder) has returned, and hence common

sense would seem to dictate that its local variable no longer exist. But they

do still exist, otherwise the adder function would be unable to work.

• In actuality, whenever JavaScript executes a function, a scope object is

created to hold the local variables created within that function. It is initialized

with any variables passed in as function parameters.

• This is similar to the global object that all global variables and functions live

in, but with a couple of important differences:

– firstly, a brand new scope object is created every time a function starts executing,

and

– secondly, unlike the global object these scope objects cannot be directly

accessed from your code.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

Javascript closure (cont.)

• So when makeAdder is called, a scope object is created with one

property: a, which is the argument passed to the function. It then returns a

newly created function.

• Normally JavaScript's garbage collector would clean up the scope object
created for makeAdder at this point, but the returned function maintains a

reference back to that scope object. As a result, the scope object will not be

garbage collected until there are no more references to the function object

that makeAdder returned.

• Scope objects form a chain called the scope chain, similar to the prototype

chain used by JavaScript's object system. A closure is the combination of

a function and the scope object in which it was created. Closures let

you save state — as such, they can often be used in place of objects.

Copyright © 2013 Slideshare. Introduction to JavaScript by Sayem Ahmed. Edited by Wei Liu.

