
CITS3403/5505 Final Test.
Handing Your Project Over to Someone Else.

This	Exam	is	worth	50%	of	your	final	grade	and	must	be	done	individually.	For	equity	reasons,	the	teaching	staff	will	
not	be	able	to	answer	individual	questions	between	the	exams	release	and	the	due	date.	Questions	may	be	posted	to	the	
Final	Test	teams	channel	and	may	be	answered	by	teaching	staff.	Any	communication,	commentary,	or	discussion	of	the	
test	during	this	period	will	be	considered	academic	misconduct.	Submit	a	zip	containing	your	HTML	document	and	any	
required	media	files	to	https://secure.csse.uwa.edu.au/run/cssubmit	by	5pm	Wednesday,	May	31,	2023	

Suppose	that	you	are	going	to	hand	your	Agile	Web	Development	Group	Project	over	to	a	new	group	of	2-
4	students	who	will	continue	to	develop	and	refine	that	project.	This	test	requires	you	to	build	a	webpage	
that	describes	how	to	build	and	run	the	projects,	provides	suggestions	for	additional	features	to	be	
incorporated	into	the	project,	and	gives	some	advice	on	working	in	teams.			

For	the	final	unit	test,	you	will	need	to	produce	a	HTML	document	describing	how	you	might	address	
these	challenges.	The	questions	must	be	answered	with	respect	to	the	current	state	of	your	group	project.		
The	document	should	satisfy	the	following	constraints:	

1. The	document	should	consist	of	a	single	HTML	file,	with	embedded	CSS	and	JavaScript	code.	You	
may	include	some	additional	image	or	icon	files	in	the	zip,	but	you	must	ensure	that	these	will	
render	in	the	document	when	the	zip	is	expanded.	

2. You	may	not	use	any	libraries	or	external	code,	like	Bootstrap	or	JQuery,	and	the	page	must	run	
without	using	live	server,	so	AJAX	should	not	be	included	in	the	document.	

3. The	page	should	render	in	a	modern	web	browser	(Chrome,	Edge,	Firefox,	Safari	etc)	from	the	file	
explorer,	and	should	be	easy	to	read	and	use.	You	may	assume	that	the	web	page	is	going	to	be	
rendered	using	a	large	desktop	monitor,	and	the	page	does	not	have	to	be	responsive.	

Specification:	The	web	page	should	have	the	unit	title	and	code,	your	name	and	student	number	in	a	header	at	
the	top	of	the	page.	The	web	page	should	have	four	clearly	separated	sections	with	easy	navigation	between	
them,	where	the	sections	are:	Overview;	Build	and	Run	Instructions;	Suggested	Features;	and	Advice	for	Groups.	
They	have	the	following	specifications.	

1. Overview:	Present	a	description	of	the	application	you	developed	in	the	project,	describing	the	
purpose	of	the	application,	the	intended	users,	and	the	way	the	application	works.	You	should	
include	a	screenshot	of	the	application.		

2. Build	and	Run	Instructions:	These	instructions	are	the	main	part	of	the	page	and	should	give	the		
steps	describing	how	to	launch	the	application	given	the	git	repository	of	the	application.	You	may	
assume	that	the	students	have	already	cloned	the	repository,	and	the	app	only	needs	to	be	hosted	
on	localhost.	Each	step	should	have	a	title,	some	detailed	text	description	of	the	process,	an	image	
showing	a	screenshot	of	the	process	being	described,	and	an	aside	containing	useful	information	or	
context	for	the	step.		

Examples	of	popular	sites	that	present	instructions	or	procedures	in	similar	formats	include	iFixit	
or	Instructables.	Your	instructions	should	also	satisfy	the	follow	properties:	

a) The	text	description	should	be	detailed	enough	to	allow	a	competent	student	to	build	and	
run	the	application.	

b) CSS	styling	should	be	used	to	make	each	step	appear	neat	and	readable,	and	clearly	
distinct	from	other	steps.	

c) An	aside	should	be	have	a	label	and	some	note,	and	should	be	presented	as	a	button	with	
the	given	label,	that	when	pressed	reveals	the	note.	Pressing	the	button	again	hides	the	
note.	

d) You		must	include	two	asides	satisfying	the	following	specification:	

1. One	aside	should	have	the	label	Object	Relational	Mapping	and	the	note	should	
describe	how	an	ORM	like	SQLAlchemy	allows	you	to	synchronise	python	classes	with	
database	tables,	using	examples	from	your	project.	The	note	should	have	100-200	
words.	

2. One	aside	should	have	the	label	Routing	and	the	note	should	explain	how	a	flask	routes	
handle	requests	using	a	stateless	client	server	architecture.	You	should	use	examples	
from	your	project,	and	the	note	should	have	100-200	words.	

e) The	steps	should	be	described	by	a	list	of	JSON	objects,	which	are	defined	in	a	script	in	the	
page	header.	These	objects	should	be	rendered	into	the	HTML	when	the	page	loads.	An	
example	JSON	object	describing	a	step	is	below.	
{
title: “Clone the repository”,

 text: “Given Git is installed, type <code>git clone github.com/my/repo</code>”,
image: “./gitCloneSuccess.jpg”,
aside: {

label: “The origin of git”,
note: “Git was created by Linus Torvalds, who also made the Linux operating system”
}

}

3. Suggested	Features:	Provide		two	suggestions	for	additional	features	that	could	be	included	in	the	
app.	For	each	feature	provide:	

a) a	short	description	of	the	feature,	and	a	reason	for	why	it	would	be	useful	to	have	
(approximately	100	words);	

b) a	user	story	describing	how	the	feature	works	from	the	user’s	point	of	view;	

c) a	set	of	test	cases,	described	using	the	given-when-then	convention	to	give	a	complete	
acceptance	test	for	the	proposed	feature.	

4. Advice	for	Groups:	Give	a	some	advice	for	working	in	groups	to	future	student	teams	taking	on	
this	project.	Address	the	following	points	(50-100	words	each):		

a) A	set	of	software	tools	you	would	recommend	using,	and	the	best	way	to	incorporate	them	into	
the	project.	Include	hyperlinks	to	the	tool,	and	possibly	link	useful	tutorials.	

b) Recommendations	for	managing	communication,	and	task	allocation	within	a	team	of	student	
developers,	citing	your	own	experiences	in	the	project.		

c) Best	practice	for	prioritizing	deadlines	and	deliverables,	particularly	when	team	members	
have	competing	deadlines	from	other	units.	

 	

Marking Criteria

Name: Student#:

Criteria Excellent Good Satisfactory Inadequate Comments Weight

Basic Data.

Name, unit code and
student number are
clearly rendered at top
of page. All
instructions followed.

Name, unit code and
student number are
rendered. Instructions
mostly followed.

Name, unit code
and student number
are rendered.

Missing data or
significant
instructions
ignored.

/2

HTML
Valid code, well
formatted, with
excellent navigation.

Valid code, well
formatted, and good
navigation.

Mostly valid code,
adequate
navigation.

Invalid/incomplete
code. Poor
navigation.

/4

CSS
Valid code with
intuitive classes, and
distinctive sections
with aesthetic appeal

Valid, maintainable
code with intuitive
classes, and
distinctive sections

Mostly valid code,
using novel style
elements, and
intuitive classes.

Invalid code,
minimal style
applied.

/4

JavaScript
Valid, well formatted
code, with perfect
function, and best
practice coding

Valid, well formatted
code, with perfect
function.

Valid code meeting
most of the
requirements.

Faulty or
incomplete code.

/4

Overview of
Application

Clear well formatted
description and
complete overview.

Clear well formatted
description and basic
overview.

Basic description
and overview of
project.

Does not convey
application’s
purpose or appeal.

/3

Instructions
Clear well formatted
instructions to easily
launch project, with
interesting asides.

Clear instructions,
sufficient to launch
project, with useful
images and asides.

Clear instructions
with most details
present and some
useful asides

Incomplete
instructions, or
poor, ill-considered
formatting.

/6

Aside: ORM
Clear description of
ORM with insightful
reference to project

Clear description of
ORM with some
reference to project

Clear description n
of ORM in Flask.

Missing
information or
detail.

/4

Aside:
Routing

Clear description of
routes in stateless client
server architecture,
with insightful
reference to project.

Clear description of
routing in stateless
client server
architecture with
reference to project

Clear description of
routing with some
reference to project.

General information
only with no insight
or reference to
project.

/4

New Feature:
Overview

Well thought out
features, with clear
rational

Reasonable features
with some
explanations.

Reasonable
features, lacking
explanation.

Inappropriate or
irrelevant features.

/2

New Feature:
User Story

Clear, well formatted
user story showing the
feature from the user’s
view.

Clear user story
demonstrating the
feature from user’s
point of view.

User story
demonstrating
essential elements
of the feature.

Unclear behaviour,
or incomplete
description.

/4

New Features:
Test Cases

Clear well formatted
acceptance test cases in
GWT format, giving
good coverage of the
feature.

Clear acceptance test
cases in GWT format,
with reasonable
coverage.

Clear test cases
giving some
coverage of the
feature

Incomplete or
poorly described
features, lacking
coverage of the
feature.

/4

Group Work:
Tools

Good selection of tools,
well motivated with
well chosen links.

Good selection of
tools with well
chosen links

Some sensible tools
described.

Generic tools, with
no discussion or
motivation.

/3

Group Work:
Processes

Insightful discussion of
processes with
references to project.

Good discussion of
processes with some
references to project.

Sensible processes
described, with
some discussion.

Basic processes
lacking relevance or
insight.

/3

Group Work:
Prioritization

Well described
techniques, with
references to project,
and coursework

Reasonable
techniques clearly
described, in the
University context

Reasonable
techniques
described, but only
at a generic level

Basic techniques,
with no insight or
practical value.

/3

Overall

/50

